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Abstract

A key issue for the design of online marketplaces is addressing leakage. Buyers
may use the marketplace to discover a seller or to obtain certain conveniences, but
the seller may then want to take transactions off the marketplace to avoid transaction
fees. Assuming buyers are heterogenous in their switching cost or inconvenience cost of
purchasing directly, we provide a model in which there is partial leakage in equilibrium.
We use the model to analyze the tradeoffs associated with different strategies the mar-
ketplace can use to attenuate the effects of leakage: investing in transaction benefits,
limiting communication, charging referral fees, using price-parity clauses, introducing
seller competition on the marketplace and hiding sellers that try to induce too much
leakage.
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1 Introduction

Leakage, the phenomenon of platform participants meeting via a platform but taking their

transactions off the platform, is a common problem facing platforms (namely, marketplaces)

that attempt to charge transaction fees.1

Marketplaces use a variety of instruments and measures to combat this issue: investing

in additional benefits of completing transactions on the marketplace (e.g. escrow, insurance,

and payment facilities on Airbnb, Amazon, eBay, Preply), charging only for referrals and

not transactions (e.g. Capterra, Thumbtack), obscuring some information about transaction

parties in order to make it more difficult for them to find each other outside the marketplace

before completing the transaction (e.g. Airbnb, AngelList, eBay, Preply, Upwork), penalizing
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sellers who attempt to take buyers off the platform by demoting them in search results (e.g.

Booking.com, Expedia, CoachUp), and imposing price parity clauses to prohibit sellers from

attracting buyers with lower prices to their own websites (e.g. Booking.com and Expedia)

or bans if providers are caught taking clients off the platform (Preply, Upwork).

In this paper we provide a simple model to study how a marketplace should optimally

respond to a leakage problem. In our benchmark setting there is a single monopoly seller

that wants to sell to buyers who have unit demand. The marketplace charges a transaction

fee when buyers purchase from the seller on the marketplace. Buyers discover the seller

(and its prices) on the marketplace, and face additional costs to complete the transaction

directly, i.e. outside the marketplace. The buyers’ reluctance to transact directly could reflect

a disutility due to the marketplace’s superior transaction infrastructure (e.g. payments,

security, shipping logistics, etc.) or a cost of switching to purchase directly. The seller sets

two prices: one for buyers who purchase from it via the marketplace and one for buyers who

purchase directly. Reflecting the heterogeneity in buyers’ reluctance to purchase directly,

the greater the discount the seller offers for buyers to transact directly, the more such buyers

it can attract directly and thereby avoid paying the marketplace’s transaction fee.

In this setting, we show that the marketplace always sets a fee that induces some (but not

complete) leakage to arise in equilibrium. The extent of leakage that arises in equilibrium

depends on how much the seller is willing to lower its direct price below the one it offers

on the marketplace—a higher marketplace fee leads the seller to offer a bigger discount for

direct transactions. The marketplace takes this relationship into account in setting its profit

maximizing fee. As the underlying leakage problem becomes less severe (i.e. buyers are

more reluctant to switch to purchasing directly), the marketplace’s fee increases (up to some

maximum level) and it makes strictly more profit in equilibrium.

We then explore six different strategies the marketplace can use to avoid or limit leakage:

(1) investing in transaction benefits, (2) limiting communication between buyers and sellers,

(3) charging the seller for referrals instead of (or in addition to) for transactions, (4) using

a price-parity clause to rule out leakage, (5) allowing a competing seller to also sell on the

marketplace, and (6) allowing seller competition but also steering in favor of one or the other

seller, depending on how much leakage each seller induces. For each of these strategies, we

analyze the tradeoff that it creates for the marketplace, and we analyze how the tradeoff

depends on buyers’ switching costs (which capture the propensity for leakage) and other

relevant parameters.

We obtain a number of new insights from analyzing the tradeoffs these strategies create for

the marketplace. We show how a marketplace’s investment incentives in transaction benefits

depend on how easy (hard) leakage is. Indeed, we find a non-monotonic relationship, in
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which the marketplace should invest more when leakage is either very easy or very hard.

We show that limiting communication between buyers and sellers to reduce leakage creates

a tradeoff by increasing buyer uncertainty about the suitability of sellers’ products. Taking

this tradeoff into account, we show that the marketplace should ban communications when

the propensity for leakage is high, and when the resulting loss of information for buyers

is either sufficiently low or sufficiently high. Charging referral fees instead of transaction

fees allows the marketplace to sidestep leakage, but at the cost of losing the ability to price

discriminate based on (uncertain) buyer demand for the seller. However, we also show that

leakage creates a complementarity between the two types of fees when the marketplace uses

both: a higher referral fee raises the seller’s expected demand conditional on participating,

which means the marketplace can also increase its transaction fee. Finally, we show that

introducing seller price competition can actually worsen the leakage problem, because it

induces involuntary leakage, but this result is reversed if the marketplace can steer buyers

to the seller that induces less leakage.

2 Literature review

By now there is an extensive literature studying the implications of showrooming (con-

sumers visiting an offline seller to search for the right product and then switching to buy

the product online at a cheaper price) and webrooming (consumers doing their initial search

online and then purchasing their chosen product offline). This literature has examined

how competition between different combinations of online and/or offline sellers works when

switching between competing sellers and/or channels is possible (Wu et al., 2004, Shin, 2007,

Loginova, 2009, Balakrishnan et al., 2014, Jing, 2018, and Bar-Isaac and Shelegia, 2022).

The key difference in our setting is that the underlying leakage problem arises from con-

sumers choosing between buying from the same seller (or sellers) either on a marketplace or

directly.

Our focus is also different in that we evaluate different strategies that the marketplace

can use to address the “showrooming” problem. Related strategies have been looked at

in other environments. An earlier economics literature explored restrictions (price floors

and restricted territories) imposed by manufacturers in order to limit free riding across the

retailers that sell their products, which in turn ensures each retailer retains an incentive

to promote the manufacturer’s products (Telser 1960 and Mathewson and Winter 1984).

Mehra et al. (2018) consider strategies (price matching and exclusive products) that offline

stores use to counter traditional showrooming. Jing (2018) studies how the showrooming

problem faced by an offline seller competing with an online seller is affected by the ability
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of the offline seller to open its own online store. In our marketplace setting, the strategies

considered and the incentives to choose them are very different, given the purpose is not to

protect a seller from competition from other sellers, but rather to stop a seller from inducing

its consumers to buy from it directly so as to avoid the marketplace’s transaction fees.

The setting in our paper is closest to Wang and Wright (2020) who look at a platform’s

use of a price-parity clause that prevents third-party sellers from undercutting in their direct

channel (or other cheaper channels) so as to eliminate showrooming. Theirs is a search

framework with many sellers, and consumers search on the platform to discover their ideal

match. In the absence of a price-parity clause, consumers are able to switch costlessly to

buy directly from the seller of their choice, and taking this into account, the platform will

always set a fee that prevents any leakage from happening in equilibrium. Our framework

differs in that switching costs are heterogeneous, so switching does end up happening in

equilibrium, even with a monopoly seller. Moreover, we look at the profitability of many

different strategies a platform can use to address the leakage problem, including the price-

parity clause they consider.

There is also an emerging empirical literature that studies marketplace leakage and the

factors that give rise to it. Hunold et al. (2020) provide evidence of steering in response to

leakage on hotel booking platforms — they show Booking and Expedia give less prominent

placement to hotels that have lower prices on the hotel’s website or on a competing platform’s

site. Gu and Zhu (2021) show that more online trust between consumers and third-party

freelancers increases leakage on an online freelancer marketplace. For a similar type of online

labor marketplace, Zhou et al. (2021) show higher customer-agent interaction frequency,

higher transaction prices, service repetitiveness and proximal customers are some of the

factors that also increase leakage.

Our paper fits within a broader literature that analyzes various non-price design choices

faced by platforms. Broad frameworks for looking at these choices include Bhargava (2022),

Choi and Jeon (2022), and Teh (2022). Some of the strategies we consider to address leakage

such as limiting communication and steering buyers have been studied by others in different

contexts. However, most papers on platform design do not consider the possibility of leakage

as a factor explaining design choices. An exception is Peitz and Sobolev (2022) who study

conditions under which a platform will make inflated recommendations to buyers on whether

to purchase from a seller whose product the platform has superior information about. In

an extension, they show how the possibility of leakage makes the platform more inclined to

induce the inflated recommendations outcome.

Edelman and Hu (2017) contains a closely related informal discussion of various strate-

gies to combat leakage (which they call “disintermediation”). At a high level, some of the
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strategies we formally analyze do overlap with those discussed by Edelman and Hu. However,

as emphasized in the introduction, our analysis tackles important tradeoffs which are not

covered in their discussion, such as how a marketplace’s investment incentives in transaction

benefits depend on how easy (hard) leakage is, the tradeoffs associated with limiting commu-

nication between buyers and sellers to reduce leakage, how referral fees and transactions fees

can be complementary in a setting with leakage, and the desirability of adding a competing

seller and steering buyers between sellers to reduce leakage.

3 Baseline model

We first lay out our model’s assumptions (Section 3.1) and then discuss these (Section

3.2).

3.1 Assumptions

There is a single platform (marketplace) M , a single seller S and measure one of buyers

that each wish to purchase one unit of S’s product. S’s product is valued at v by all buyers

and it incurs a marginal cost equal to c, where v > c. The buyers have an outside option

valued at zero.

S can sell to buyers through two channels: via M , in which case it must pay M a fee per

transaction f , or via its direct channel (with no transaction fee). S can set different prices

across these two channels: pm when selling via M and pd in its direct channel. Facing these

prices, buyers make their purchase and channel decisions.

Buyers have a preference for using M . They face no cost of going to M , and they face a

disutility s of buying directly from S, which is drawn from a distribution G on the interval

[0, s], with everywhere positive density on (0, s). This bias in favor of M can be interpreted

in two different ways. One is that buyers are uninformed about the existence of S, so they

rely on M to discover S (and its prices in both channels), after which they face a cost s to

switch and buy directly from it. The other is that they already know about S’s existence,

but they perceive a disutility s if they buy directly instead of through M . For instance, this

could reflect that direct payments to S are less convenient or seem less secure, or logistics are

inferior in the case of shipping a product directly rather than via M . Either interpretation

of buyers is allowed in our baseline model, and indeed, there may be some buyers of each

type.

These interpretations allow us to cover different types of applications. In case M is a

marketplace and S is an individual (e.g. Airbnb, CoachUp, eBay, Etsy, Fiverr, OpenSea,
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Preply, Rover, TaskRabbit, Upwork etc.), it is natural to think of all buyers discovering the

seller via a marketplace. On the other hand, if M is a marketplace for brands that have their

own websites (e.g. Amazon.com, Apple’s App Store, Booking.com, Tmall), some buyers may

be aware that a seller they are interested in has its own website, but they might still feel

that going through the marketplace is more convenient or more secure.

The timing is completely natural. There are three stages: (i) M sets its fee f ; (ii)

observing the fee, S sets its price pd, and if it decides to list on M , sets its price pm as well;

and (iii) buyers observe both prices2 and decide whether to buy and which channel to use.

3.2 Discussion

Before proceeding, it is useful to briefly discuss our key assumptions. One might think a

simple way to avoid leakage is to charge S a fixed fee for listing instead of a fee per transaction.

However, in practice many marketplaces, such as those discussed above, derive most of their

revenues from transaction fees charged to their sellers.3 There are several reasons for this.

One is that sellers typically face budget constraints, so are unable to pay the marketplace

upfront for the value they expect to get from all future transactions. Another is that in

reality, there is considerable heterogeneity and uncertainty in the demand and/or revenue

that sellers expect to obtain on the marketplace, which means a fixed fee that tries to fully

extract a seller’s surplus may result in the seller not participating at all. In Online Appendix

A, we show how our baseline model analysis and results extend to allow for a fixed access fee

that extracts an exogenous fraction of S’s surplus. In Section 5.3, we consider the possibility

of fixed referral fees, which are different from fixed access fees in that they are paid per buyer

brought to the seller. Finally, note that with unit demand and positive marginal costs, an

ad-valorem (i.e. proportional) fee is equivalent to a per-unit transaction fee, something we

prove for our baseline model in Online Appendix B. For this reason, we stick with a per-unit

fee for expositional purposes.

Although we will analyze the case with competing sellers in Section 5.5, for most of our

analysis we focus on the simpler case with a single seller. The way we interpret the single

seller in our model is that M is actually a marketplace for many different independent sellers,

and our analysis applies to each one of them. Alternatively, if different sellers are ex-ante

2This could be either because S communicates pd to buyers who find it on M (which is in S’s interest
to do), or because each buyer who finds S can costlessly check the direct price pd (the disutility s is only
incurred if the buyer actually purchases in the direct channel).

3Some marketplaces do charge both fixed access fees and transaction fees (e.g. Apple for iOS developers
and Amazon for its third-party sellers). However, the fixed fees are typically a very small part of total
revenue and they mostly serve the purpose of screening sellers that would just waste the marketplace’s time,
reflecting fixed costs to the marketplace of onboarding and handling these sellers. In other cases, there can
be monthly access fees associated with software provided by the marketplace (e.g. Open Table).
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identical other than the measure of buyers that are interested in each, our analysis would

still apply even if M could only set a single fee across all the different sellers since each

seller’s and M ’s profit would just scale with this measure, and the choice of M ’s optimal fee

would remain.

A final key assumption is that buyers are homogenous in their willingness-to-pay for

S’s product. Allowing for heterogeneity in this willingness-to-pay would create downward

sloping demand for S’s product, but would destroy the tractability of our framework because

it would mean we have two dimensions of heterogeneity: willingness-to-pay for the product

and willingness-to-pay across the two channels. S’s optimal prices no longer have closed-

form solutions, which makes it hard to say much about M ’s optimal fee or other strategies

to avoid leakage.

4 Baseline analysis

Each buyer draws a switching cost (or disutility) s and purchases directly iff

v − pd − s ≥ max {v − pm, 0} .

The buyer compares the direct channel with the best alternative: buying on M if pm ≤ v,

or the outside option, which gives utility of zero.

We can simplify the analysis by eliminating weakly dominated strategies to obtain the

following preliminary result (proof is in the appendix).

Lemma 1. M ’s optimal fee and S’s optimal prices satisfy 0 < f ≤ v − c and pd < pm = v.

These properties are intuitive. M must choose a positive fee f , but low enough so that S

can make non-negative profits selling through M . Meanwhile, S will set its price to extract

the entire buyer surplus on M and will undercut in the direct channel, in order to attract

buyers with the lowest switching costs and avoid paying M ’s fee when selling to them.

Given Lemma 1, S’s pricing problem reduces to setting pd ≤ v to maximize its profit

π = (pd − c)G (v − pd) + (v − c− f) (1−G (v − pd)) . (1)

Since S can attract all buyers to purchase directly by setting pd ≤ v − s (where s is the

upper bound of the support of G (.)), then S will never want to price less than v − s. Thus,

S’s optimal pd is such that v − s ≤ pd ≤ v.
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Denote by pd (f) the unique solution in pd to the first-order condition (FOC)

G (v − pd)− g (v − pd) (pd − (v − f)) = 0,

so that

pd (f) = v − f +
G (v − pd (f))

g (v − pd (f))
. (2)

Provided G is well behaved4, so there is a unique solution to this FOC that characterizes the

profit maximizing price, pd (f) is decreasing in f . The higher the transaction fee charged by

M , the more aggressively S will price in the direct channel in order to induce leakage.

S’s profit maximizing price p∗d (f) is then given by

p∗d (f) =


v − s if pd (f) ≤ v − s
pd (f) if v − s ≤ pd (f) ≤ v

v if pd (f) ≥ v

.

The corresponding profit for M is

Π (f) = f (1−G (v − p∗d (f)))

so

Π∗ = max
f≤v−c

{f (1−G (v − p∗d (f)))} . (3)

The expression of M ’s profits reflects the leakage tradeoff. If f = 0, S will set pd = v since

it has no reason to try to shift transactions to the direct channel. However, once f > 0,

because there are some buyers with s arbitrarily close to 0, S will always want to lower pd

to induce some leakage. As M increases f further, it leads S to price more aggressively in

the direct channel (i.e. lower p∗d), which means more leakage and fewer transactions on M .

This implies Π∗ < v − c since at f = v − c, some buyers will no longer purchase on M .

Initially, we are interested in the effect on the equilibrium fee, the direct price, leakage

and M ’s profit of changing the distribution of switching costs so that overall, buyers have

higher switching costs. The immediate effect of higher switching costs is that the direct

channel is relatively less appealing to buyers, which should increase M ’s profits as fewer

buyers switch (all other things equal). On the other hand, precisely because the direct

channel is less appealing, S has to price more aggressively in the direct channel to attract

buyers, which leads more buyers to switch. Finally, M can respond to leakage being less

4A sufficient condition is that g is continuous over its support, and is weakly decreasing in its argument,
so that G/g is strictly decreasing in pd (f).

8



appealing by raising its fee, or it can respond to S pricing more aggressively in the direct

channel by lowering its fee. Either way, M ’s optimal adjustment of its fee can help mitigate

the effect on leakage of a change in switching costs.

To obtain more specific results, we proceed by assuming G is the uniform distribution;

i.e.

G (s) =
s

µ
,

for s ∈ [0, µ], where µ > 0, with G (s) = 0 for s < 0 and G (s) = 1 for s > µ. This ensures

we can get closed form solutions.5 We are interested in how things change when switching

costs increase. Switching costs can be interpreted as capturing the underlying propensity

for leakage: higher switching costs correspond to a lower propensity for leakage (holding

everything else constant). A change in switching costs could arise from an exogenous shock

in preferences or technology, or it could be the result of strategic design decisions by M .

We capture an increase in switching costs by increasing µ. If µ2 > µ1 > 0, then G2 (s)

stochastically dominates G1 (s), so an increase in µ corresponds to an overall increase in

switching costs in the sense of first-order stochastic dominance.6

Assuming f ≤ v − c, we have

pd (f) = v − f

2

and therefore S’s profit maximizing price p∗d (f) is given by

p∗d (f) =

{
v − µ if f ≥ 2µ

v − f
2

if f ≤ 2µ
. (4)

The corresponding profit for M is

Π (f) =

{
0 if f ≥ 2µ

f
(

1− f
2µ

)
if f ≤ 2µ

. (5)

Recalling that M will always set f ≤ v − c, and relegating the details to the appendix,

we obtain the following proposition.

Proposition 1. Suppose G (s) = s
µ

and s = µ. There is always positive but partial leakage

equal to 1
µ

(v − p∗d (µ)), where the equilibrium transaction fee, direct price and marketplace

5We can still get closed form solutions provided G is a power function. In Online Appendix C we repeat

the analysis of the model in this section with G (s) = 1
µs

α for s ∈
[
0, µ

1
α

]
and show we get the same

qualitative results. We stick to the simpler linear function for exposition purposes.
6Formally, G2 first-order stochastically dominates G1 if G2 (s) ≤ G1 (s) for all s, with strict inequality

over an interval with positive measure.
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profit are as follows:

f ∗ (µ) = min {µ, v − c}

p∗d (µ) = v −min

{
µ

2
,
v − c

2

}
Π∗ (µ) =

{
µ
2

if µ ≤ v − c
(v − c)

(
1− v−c

2µ

)
if µ ≥ v − c

. (6)

In response to an increase in switching costs (an increase in µ), the marketplace’s fee weakly

increases, the seller’s direct price weakly decreases, the extent of leakage weakly decreases,

and the marketplace’s profit increases.

Given there are some buyers with arbitrarily small switching costs, any positive fee will

lead to some leakage. However, it never makes sense for M to set a fee that leads all buyers

to switch to purchase directly. At such a high fee, it will get no demand. This is why there

is always positive but partial leakage in equilibrium.

Proposition 1 says that M ’s fee increases and it does better when switching costs of

buying directly increase (in the first-order stochastic sense), while S’s direct price and leakage

decrease as a result. To unpack the effects of an increase in switching costs, consider what

happens as µ increases starting from a low level (i.e. where switching costs are relatively

low). First note that in the range of fees at which M still has some demand (i.e. f < 2µ),

(4) implies that S’s direct price only changes in response to a change in M ’s fee and does

not depend on µ directly. If fewer buyers purchase directly as a result of higher switching

costs, M will want to increase its fee. S will respond by decreasing its direct price to induce

more buyers to switch in order to avoid M ’s higher fee. This decrease in S’s direct price

mitigates the initial decrease in leakage, and indeed turns out to leave the net amount of

leakage unchanged. But with a higher fee, M is strictly better off.

As switching costs µ continue to increase above µ = v − c, M ’s fee is pushed to the

maximum level v − c beyond which S would drop out. At this point, further increases in

switching costs will not lead to any further increase in M ’s fee, and so S no longer decreases

its direct price. With S’s direct price held constant, we are only left with the immediate

effect of higher switching costs, which is to decrease leakage and increase M ’s profit.

5 Strategies to mitigate leakage

In this section we explore six alternative strategies that can help mitigate leakage: (1)

investing in transaction benefits, (2) limiting communication, (3) charging the seller for
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referrals rather than for transactions, (4) using a price-parity clauses to rule out leakage, (5)

adding a rival seller onto the marketplace; and (6) in the case there is an alternative seller

that the marketplace can show, hiding the seller if it tries to induce too much leakage. In

each case, we explain the tradeoffs that arise from using the alternative strategy, modifying

the baseline model as necessary to capture the relevant tradeoff. And we explore how the

tradeoffs change as we increase switching costs.

5.1 Investing in transaction benefits

A direct way the marketplace could try to reduce or even eliminate leakage is by offering

buyers some benefits from completing transactions on the marketplace. This means that

buyers and sellers have an incentive to use the marketplace even for repeat interactions. For

example, StyleSeat, a marketplace that helps consumers discover and book appointments

with beauty salons and stylists has added the ability to pay through the platform, schedule

bookings 24/7, receive personalized reminders, handle last minute cancellations, manage

receipts and records of past transactions, and handle no-shows and rebookings.

We model this by assuming that M must invest K (b) to provide buyers with a benefit b

from completing their transaction on M , where K (b) is an increasing and convex function

of b (one could conduct an equivalent analysis if the benefit was relevant to S, or to both

buyers and S7). The baseline model is otherwise unchanged. Our goal in this section is to

study how M ’s optimal level of investment in transaction benefits and the resulting amount

of leakage depend on the magnitude of switching costs.

Suppose M has chosen b and consider the resulting game. A buyer with switching cost

s purchases directly iff

v − pd − s ≥ max {v + b− pm, 0} .

Following the same logic as in the baseline, M always sets f ≤ v + b − c and S sets

pm = v+ b and pd ≤ v. Thus, the decision S now faces is to set pd ≤ v to maximize its profit

π = (pd − c)G (v − pd) + (v + b− c− f) (1−G (v − pd)) .

S’s profit-maximizing price p∗d (f) is given by

p∗d (f) =


v − s if pd (f) ≤ v − s
pd (f) if v − s ≤ pd (f) ≤ v

v if pd (f) ≥ v

,

7It also does not matter whether M invests in b before or after (or at the same time) it sets its fee f ,
provided it is chosen before S sets its prices.
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where

pd (f) = v + b− f +
G (v − pd (f))

g (v − pd (f))
.

Provided G continues to be well behaved (as in the baseline), so there is a unique solution

to this FOC that characterizes the profit maximizing price, pd (f) is decreasing in f and

increasing in b.

A key difference relative to the baseline is that S no longer has an incentive to induce

leakage (i.e. set p∗d (f) < v) as soon as f > 0. Rather, it only has an incentive to induce

leakage when f > b. This is because, as long as f ≤ b, the seller S’s margin on M (equal to

v+ b− c− f) is higher than the maximum margin it can obtain in its direct channel (v− c).
Taking this into account, M will always set f ≥ b. Provided M has chosen b > 0, it has the

option to set f = b and obtain a profit of b−K (b) given there is no leakage. Alternatively,

it can set a higher fee (f > b) and face some leakage.

Stepping back to the first-stage problem that also involves setting b, the corresponding

profit for M is

Π∗ = max
b≥0

b≤f≤v−c+b

{f (1−G (v − p∗d (f)))−K (b)} .

To obtain closed form solutions with full characterization of the optimum, we adopt the

same uniform distribution as in the baseline model and assume K is quadratic. Relegating

the calculations to the appendix, we obtain the following proposition.

Proposition 2. Suppose G (s) = s
µ

and s = µ, and K (b) = k
2
b2, with k > 0. Then the

marketplace’s optimal choice of transaction benefits is

b∗ =


1
k

if µ ≤ 1
2k

1
2k− 1

2µ

if 1
2k
≤ µ ≤ µ

1
k
− v−c

2kµ
if µ ≥ µ

,

where

µ =
v − c

2
+

1

4k
+

√(
v − c

2

)2

+
1

16k2
.

The marketplace’s optimal level of investment in transaction benefits b∗ is decreasing in

the investment cost k, and initially constant in switching costs µ, then decreasing in µ for

µ ∈
[

1
2k
, µ
]
, and finally increasing in µ for µ ≥ µ. Meanwhile, the equilibrium amount

of leakage is initially constant at zero, then increasing in µ for µ ∈
[

1
2k
, µ
]
, and finally

decreasing in µ for µ ≥ µ.

The result in Proposition 2 that M ’s investment in transaction benefits b∗ is everywhere
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decreasing in k is not at all surprising. Higher costs of investment naturally lead to less

investment in transaction benefits.

More interesting and unexpected is the comparative static of b∗ in µ. Proposition 2 shows

b∗ attains its minimum when M faces moderate switching costs (µ = µ), and the highest

level occurs at extreme levels of switching costs, i.e. µ → 0 and µ → ∞ (note indeed b∗

tends to 1
k

again as µ→∞).

To explain this result, it is useful to trace through what happens as switching costs

(measured by µ) increase. When they are sufficiently low, the competitive pressure of the

direct channel is highest, so the most effective way for M to generate revenue is to set f = b,

so S does not want to induce any leakage. With all buyers purchasing on M , it extracts

the full marginal value of its investment in b, thereby setting b to maximize b −K(b), and

setting b∗ = 1
k
. As µ increases from this low base (i.e. µ > 1

2k
), value extraction becomes

more attractive than avoiding leakage, and it becomes optimal for M to set f > b. This

results in increasing leakage. With fewer buyers purchasing on M , the marketplace no longer

extracts the full marginal value of an investment in b, so b∗ decreases. In this intermediate

range of switching costs, the equilibrium level of leakage is increasing in µ, reflecting higher

fees and a lower level of investment in transaction benefits. Profits are still increasing in µ,

but the higher switching costs allow the marketplace to no longer work as hard in terms of

providing transaction benefits. Past a certain point however (i.e. for µ > µ), the switching

costs are high enough that the equilibrium amount of leakage starts to decrease as switching

costs increase. This is the point where M sets its fee to extract the entire margin from S

for transactions conducted on M (i.e. f ∗ = v + b∗ − c). Since the fee cannot increase any

further, any increase in switching costs from here onwards results in more buyers choosing

to purchase via M instead of via the direct channel. This means M extracts a higher share

of the total value created by transaction benefits, and so its investment incentive (its choice

of b∗) is now increasing.

As is clear from our explanation above, the non-monotonic relationship between switching

costs and both the marketplace’s investment in transaction benefits and the resulting amount

of leakage generalizes beyond the specific functional forms we have used (namely, a linear

distribution function for switching costs). When switching costs are very low, the threat

of leakage is highest, so the marketplace needs to invest a lot in transaction benefits to

combat it. At intermediate levels of switching costs, M can slack off in terms of investing in

transaction benefits and rely instead on higher switching costs to extract more from S (more

than the value of its transaction benefits in fact). This means M ’s incentives to invest in

transaction benefits are diminished in this region. Once switching costs become very high,

the threat of leakage is no longer constraining M ’s fees, so the marketplace can afford to
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extract the entire margin from the seller. This makes it more profitable for M to invest in

something that can increase the margin it can extract from each customer, i.e. transaction

benefits.

5.2 Limiting communication

In an effort to prevent leakage, marketplaces can make communication between buyers

and sellers more difficult. This can involve hiding the identity of the parties and banning

or restricting communications between them until after they have already committed to

transact, thereby making it difficult for them to deal directly. Often, communications can

only be done via the marketplace itself, and the marketplace blocks sharing of identifying

information.

While these types of restrictions help reduce leakage, they also have a downside. Limiting

communication on the marketplace can make it more difficult for buyers to ascertain the

quality or suitability of the seller’s product. In other words, buyers are left with more

uncertainty about the value of the seller’s product. For instance, AngelList and its syndicate

leads connect investors with startup founders who are seeking to raise capital. Most syndicate

leads on AngelList have very strict policies prohibiting investors to directly contact founders

(e.g. via email). This makes it hard for investors to ask founders questions and to thoroughly

evaluate their competence and the prospects of their startups.

In this section we capture the tradeoff associated with placing limits on communication

in a simple way. Obviously, the strategy of limiting communication is only relevant to the

extent buyers rely on M to discover S. To keep things as simple as possible, we will stick to

that interpretation. We assume that a priori buyers have a probability 0 < q < 1 of actually

valuing S’s product at v and probability 1 − q of valuing the product at zero. This covers

the case all buyers have the same draw (v or zero), as well as the case each buyer draws

their valuation independently with the same probability q. We treat q as a fixed parameter

known to all parties.

If buyers are allowed to freely communicate with S, they can find out with certainty

whether they value S’s product or not, as well as its price in the direct market, just as in the

baseline model. Alternatively, M has the option to ban communication between the buyer

and S (e.g. by hiding the seller’s identity, requiring that all communication is intermediated

and vetted by the marketplace, etc.). We assume that this effectively prevents buyers from

being able to switch and buy from S directly. However, it also lowers the probability that

any given buyer will find out their true valuation for S’s product from one to η ≤ 1.8 This

8The idea that limiting the exchange of information reduces transaction value on a platform is also present
in Piolatto and Schuett (2022). However, Piolatto and Schuett do not consider the platform’s choice of how
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means that with probability 1− η, a given buyer will never be sure whether their value for

S’s product is v or zero, so they must make their purchase decision based on the expected

value qv. Thus, our modelling approach treats limiting communication as a discrete decision

(ban communication or not), whereas the impact on learning the valuation of the product is

continuous. When η = 1, there is no information loss from banning communication, so M

will always want to do so, as we will see. When η = 0, there is complete information loss,

so all buyers make their purchase decisions based on expected value qv. The lower η, the

higher the information loss.

If M does not ban communication, then things are straightforward. M ’s and S’s pricing

behaviors are the same as in the baseline, except all payoffs must be multiplied by q. Thus,

M ’s expected profit is qΠ∗, where Π∗ is given by (3).

Suppose now M bans communication. Assuming S lists on M , leakage is impossible so

S’s only relevant price is the on-platform price pm. It has two pricing options. The first one

is to set pm = v and only sell to the fraction ηq of buyers who learn that their valuation

of its product is v. Its resulting profit is ηq (v − c− f). The second option for S is to set

the lower price pm = qv, so that it also sells to the 1− η buyers who never learn their true

valuation for its product. Its resulting profit in this case is (1− η + ηq) (qv − c− f). Thus,

S prefers the first (high-price) option if and only if

f >
(1− (2− q) η) qv

1− η
− c.

Otherwise, S chooses the second (low-price) option.

In turn, this implies that there are two possible optimal options for M when choosing f :

1. Set f = v− c, which induces S to choose the high-price option, resulting in M making

a profit of ΠH (η) = ηq (v − c).

2. Set f = (1−(2−q)η)qv
1−η − c, which induces S to choose the low-price option, resulting in

M making a profit of ΠL (η) = (1− η + ηq)
(

(1−(2−q)η)qv
1−η − c

)
.

Thus, M ’s profit after banning communication is max {ΠH (η) ,ΠL (η)}, which needs to

be compared to the profit qΠ∗ without any limits on communication. Relegating the rest of

the analysis to the appendix, we obtain the following proposition.

Proposition 3. The marketplace prefers to ban communication for all η > Π∗

v−c . If q > c
v−Π∗ ,

then the marketplace also prefers to ban communication when η < ηL, where ηL > 0 is

uniquely defined by ΠL (ηL) = qΠ∗. If q is close enough to one, the marketplace always

much information exchange to allow.
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prefers to ban communication. Finally, if G (s) = s
µ

and s = µ, then the marketplace will

prefer to ban (allow) communication when µ is sufficiently close to zero (sufficiently large).

Recall 0 < Π∗ < v − c, so the first result in the proposition means there is always

some cutoff between 0 and 1 such that for all higher η, the marketplace prefers to ban

communication. This reflects that when η is close enough to one, the information loss

from banning communication is small, while retaining the upside of eliminating leakage.

Surprisingly, provided q is not too small (i.e. provided q > c
v−Π∗ ), then M also prefers to

ban communication for η sufficiently close to zero.

To explain these properties, it is useful to note that ΠH (η) is increasing in η, whereas

ΠL (η) is decreasing in η (whenever ΠL (η) > 0). To understand the difference, recall that

option 1 involves only selling to buyers who learn that they value S’s product at v. When

η is higher, the number of such buyers is larger (i.e. there is less information loss due to

the communication ban), so M ’s profit is also higher under the communication ban. Option

2 involves setting a lower fee such that S also sells to buyers who learn nothing. In this

case, buyer demand is decreasing in η: fewer informed buyers means more buyers are willing

to buy at pm = qv, which makes this option more profitable for M , especially if q is high.

Furthermore, the maximum fee f that M can charge under this option is higher when there

are fewer informed buyers since S prefers option 2 when η is low and q is high. Both of these

effects mean that, provided q is not too small and η is close enough to zero, M will also want

to ban communication. Indeed, if q is high enough, then this means M will prefer to ban

communication for the full range of η.

So essentially M has two choices when it chooses to ban communication. The first choice

is to set f high enough so that S sets a high price at which only buyers who are informed and

get the high draw end up buying. In this case, more information (i.e. higher η) is better for

M because it increases demand—more buyers are informed. The second choice is to set f low

enough so that S sets a low price at which buyers who are not informed and buyers who are

informed and get the high draw end up buying. In this case, more information is worse for

M because it reduces demand (higher η means fewer people are uninformed). Of course, M

chooses the better of these two strategies, which is determined endogenously by η and q, but

the point remains that either one can be optimal and the effect of information is different

depending on which of the two strategies is optimal. If it is the first one, then banning

communication is optimal for high enough η; if it is the second one, banning communication

is optimal for low enough η.

To further understand the logic of the second case, it is useful to note that when the

information loss is already quite high (low η) such that M wants to induce S to price low
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(at qv), the buyers who are informed and draw the high type are left with rent (1− q) v,

and there are ηq such buyers. In this case, further decreasing η decreases the total rent left

to buyers, which helps S, and in turn M (given it can extract the rent via its fee).

5.3 Referral fees

Another way for a marketplace to fight leakage is to prevent the problem from arising in

the first place: rather than charging the seller a transaction fee, it can charge the seller for

referring buyers to it, i.e. informing them of its existence. For example, Thumbtack, a leading

marketplace for home services, has adopted this approach: it charges service providers for

new leads, without any transaction fees whatsoever.

To keep things as simple as possible, we focus on the interpretation of our model in

which all buyers need to visit M to discover S, but then some switch to buy directly. In

this scenario, M can sidestep the leakage issue by charging S only for referring buyers to

it, and not based on whether or not the buyer completes the transaction on M .9 By just

charging for each buyer that comes via M (regardless of whether they end up buying on

M or directly), M eliminates S’s incentive to induce buyers to switch to purchase directly.

This is because now S has the same marginal cost (c) regardless of whether it serves a buyer

through M or directly. It is then easy to see that S will set pd = pm = v and make v− c− r
for each buyer referred by M , where r is the referral fee. Indeed, referred buyers purchase

on M since they have no reason to incur s given the prices are identical. The alternative

for S is not to sign with M and get nothing, given that all buyers rely on M to discover S.

This implies M can charge r = v− c, so S is just willing to accept referrals from M , and M

obtains a profit of v− c. This is strictly higher than M ’s profit in (3) with a transaction fee,

which as noted there, is strictly less than v − c. Thus, in this simple framework, M always

prefers to use a referral fee over a transaction fee.

Given this, one may wonder why we don’t observe a majority of marketplaces that face

leakage use referral fees instead of transaction fees. A key reason is that referral fees are

quite risky from the point of view of sellers: they do not a priori know for sure they will get

anything from the referral. The buyer may be a genuine buyer or one that turns out not to

be interested. As a result, the referral fee must be lowered to compensate sellers for this risk.

More generally, a referral fee (or any kind of fixed fee) eliminates the marketplace’s ability to

price discriminate across buyers that differ in the size, value or number of their transactions.

This is why a fee charged at the transaction level may work better than a fee that is a fixed

amount per buyer. To show this formally, we introduce uncertain buyer demand and show

9This type of referral fees has also been studied by Condorelli et al. (2018), who look at whether an
intermediary should charge for referrals rather than buying and reselling.
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that it generates a realistic tradeoff for M between using referral fees and using transaction

fees.

We model uncertain buyer demand by assuming M does not know ex-ante (when it sets

its fee) the demand facing S. Specifically, we assume all buyers have the same probability q

of actually valuing the product at v and therefore conducting a transaction, and probability

1− q of valuing the product at zero, but M does not know q. Once again, this is compatible

with two interpretations: all buyers have the same draw (v or zero) or each buyer draws

their valuation (v or zero) independently, with the same probability q.10 When M sets its

fee, it only knows the prior distribution of q. For simplicity, we describe this by a continuous

distribution function H on the interval
[
q, q
]
, where 0 ≤ q < q and q is not necessarily finite.

This distribution H is assumed to be independent of the distribution G. Other than the

introduction of random q, everything else is assumed to be the same as before.

Consider first the case M charges a transaction fee f , as in the baseline. The timing is

now as follows:

1. M sets its transaction fee f

2. The value of q is drawn and, having observed it, S decides whether to accept the

contract or not

3. S sets its prices (both direct and, if it accepts the contract, on M)

4. Buyers visit M and are informed of S if it is listed on M . Buyers then realize the value

of the product, before deciding whether to purchase, and if so, in which channel. S

pays f to M for each transaction on M .

The choices of M ’s optimal fee f and S’s optimal prices pm and pd are identical to before

because all payoffs are multiplied by q, but q does not affect the choices between different

options, including whether S should accept the contract. This is because in case a buyer

values the product at zero, which happens randomly, such a buyer is irrelevant to S’s and

M ’s decisions and profit. Thus, M ’s corresponding expected profit in this setting is just

Π∗
∫ q
q
qdH (q), where Π∗ is the profit from the baseline model with no uncertainty given by

(3).

Now consider the case where M instead charges S a referral fee for each referred buyer.

The timing is as follows:

10If there was uncertainty over the number of buyers, then this would create a tradeoff between transaction
fees and fixed fees. However, to generate a tradeoff between transaction fees and referral fees we need
uncertainty over the number of transactions per buyer.
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1. M sets its referral fee r

2. The value of q is drawn and, having observed it, S decides whether to accept the

contract or not

3. S sets its prices (both direct and, if it accepts the contract, on M)

4. Buyers visit M and are informed of S if it is listed on M . S pays r to M for each such

buyer referred. Buyers then realize the value of the product, before deciding whether

to purchase, and if so, in which channel.

When M charges a referral fee, buyers can still decide whether to complete the transaction

on M or buy directly. The key difference in this case is that, even if a buyer decides to

purchase directly, S still has to pay for the referral of that buyer (since the buyer needed M

to discover S).11 Since there is no transaction fee, S has no incentive to lower its price in its

direct channel, so all buyers will just purchase via M since they have no reason to incur the

cost s to switch and buy directly.

If M knew the probability q that each buyer is actually interested in S’s product, it

would optimally charge a referral fee r = (v − c) q and extract all the expected surplus. But

since M does not observe q, it has to take into account that a higher referral fee makes it

less likely that S (which knows the value of q) will accept the offer. Specifically, S accepts

the offer if and only if (v − c) q ≥ r. If instead (v − c) q < r, then S rejects the offer and M

makes no profit. Thus, M ’s expected profit is maxr
{
r
(
1−H

(
r
v−c

))}
, or, defining y = r

v−c ,

the profit can equivalently be written as (v − c) maxy {y (1−H (y))}.
Comparing expected profits under the two types of fees, M ’s profit is higher with a

transaction fee if and only if

Π∗
∫ q

q

qdH (q) > (v − c) max
y
{y (1−H (y))} . (7)

From (3), we know that Π∗ < v − c, as noted above. On the other hand, we also know that∫ q
q
qdH (q) > maxy {y (1−H (y))}.12

Equation (7) captures the fundamental tradeoff a marketplace faces when choosing be-

tween referral fees and transaction fees. Referral fees sidestep the leakage problem, thereby

allowing M to extract more surplus from buyers who are in fact interested in S’s product

11In practice, this can take the form of a per-click referral fee, i.e. a fee that the seller pays for every buyer
that clicks on the seller’s profile on the marketplace or on the link to the seller’s direct website.

12To see this, note if we define q∗ = arg maxq {q (1−H (q))}, then
∫ q
q
qdH (q) − q∗ (1−H (q∗)) =∫ q∗

q
qdH (q) +

∫ q
q∗

(q − q∗) dH (q) > 0.
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(v − c rather than Π∗). On the other hand, transaction fees allow M to extract more sur-

plus when there is a lot of uncertainty around buyer demand (holding
∫ q
q
qdH (q) = E [q]

constant, y (1−H (y)) is lower when H is more dispersed around E [q]) because they align

the revenue extracted with buyer demand. Thus, if the leakage problem—measured by the

magnitude of switching costs—is sufficiently severe (so Π∗ is very low compared to v − c),
than using referral fees is optimal. If there is too much uncertainty about buyer demand (so

maxy {y (1−H (y))} is very low compared to
∫ q
q
qdH (q)), then using transaction fees (and

incurring some leakage) is optimal. In Online Appendix D.1, we make this intuition more

precise by adopting specific functional forms for the distributions G (.) and H (.) and stating

the tradeoff above as a formal proposition.

One could also use the same logic to show a very similar tradeoff between transaction

fees and fixed access fees (instead of fixed referral fees). In that case, we would introduce

uncertainty about the total number of buyers a seller would have access to through the

marketplace instead of, or in addition to, the uncertainty about the demand of each individual

buyer. However, using fixed access fees is less attractive than referral fees since it gives up

even more ability to price discriminate (based on the total number of buyers a seller attracts

via the marketplace). Thus, exclusively relying on fixed access fees should only be considered

when it is not possible to charge the seller for each time a buyer is referred to the seller.

We now briefly discuss what happens when M can charge both a referral fee r and a

transaction fee f . We can use the logic in the baseline model to conclude 0 < f ≤ v− c and

pd < pm = v. And S’s profit is

max
pd≤v
{q ((pd − c)G (v − pd) + (v − c− f) (1−G (v − pd)))− r} .

Thus, S sets p∗d (f) as in the baseline model and participates on M iff

qπ (f)− r ≥ 0,

where

π (f) ≡ (p∗d (f)− c)G (v − p∗d (f)) + (v − c− f) (1−G (v − p∗d (f))) .

M ’s profit as a function of the referral fee r and the transaction fee f is then

Π (r, f) =

∫
q≥ r

π(f)

(r + qf (1−G (v − p∗d (f)))) dH (q) .
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It is easily seen that if r = 0, then

Π (0, f) = Π (f)

∫ q

q

qdH (q) ,

where Π (f) is the same as in the baseline model. Thus, in this case, the optimal f is the

same as in the baseline model.

And if f = 0, then the seller sets pd = v, so

Π (r, 0) = r

(
1−H

(
r

v − c

))
,

which is of course identical to the case in which only referral fees are used, analyzed above.

Denote x = r
π(f)

, which can be interpreted as the fraction of S’s profit extracted by M

via the referral fee. Then we can rewrite M ’s profit as

Π (x, f) =

∫
q≥x

(xπ (f) + qf (1−G (v − p∗d (f)))) dH (q) .

Thus, for every draw of q such that S participates, M extracts xπ (f) via the referral fee

and qf (1−G (v − p∗d (f))) via the transaction fee.

The expression above reveals that the referral fee now plays a dual role. First, it provides

a way to obtain revenue while avoiding leakage. For a given q such that q ≥ x, it is easily

verified that x and f are substitutes in maximizing xπ (f)+qf (1−G (v − p∗d (f))), i.e. when

x increases, the transaction fee f that maximizes xπ (f) + qf (1−G (v − p∗d (f))) decreases

(this is because π (f) is decreasing in f). This is what one would expect based on the above

analysis of the tradeoff between pure referral fees and pure transaction fees. However, the

referral fee now also has a second effect: it acts as a screening device for S’s participation.

Increasing the fraction of S’s profits extracted via the referral fee (i.e. increasing x) results

in S participating less often, but it also results in it having a higher average probability of

buyers liking its product when it does participate (i.e. E [q|q ≥ x] is higher), which means

the optimal f can increase in response to an increase in r.

These observations help explain why M may find it optimal to use both referral and

transaction fees. In Online Appendix D.2 we provide an example to illustrate this, in which

G (s) = s
µ

over [0, µ] and q can only take two values: q0 − σ with probability 1
2

and q0 + σ

with probability 1
2
. We find that the optimal transaction and referral fees are both positive

and non-monotonic in the standard deviation σ of q. The reason is that when the standard

deviation is not too high, M prices such that S always participates and in this case it

is natural that more uncertainty over buyer demand leads M to lower the referral fee and
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increase the transaction fee. However, once the standard deviation becomes too high, M finds

it profitable to price such that S only participates when buyer demand is high (q = q0 + σ),

so now there is no longer any need to charge any transaction fee—M can extract the full

surplus of S when buyer demand is high via a referral fee.

5.4 Price-parity clauses

Suppose the marketplace can require that the participating seller must set its direct

price no lower than its price on the marketplace. If the seller sets a lower direct price, the

marketplace commits to delist the seller. This type of clause in a contract is known as a

price-parity clause (PPC). While this is not in the marketplace’s interest ex-post in case the

seller does undercut given that it would deprive the marketplace of all revenue, being able

to commit to such a clause can make the marketplace better off ex-ante if it stops the seller

from undercutting in the first place. Such PPCs have been used by hotel booking platforms,

price comparison platforms, as well as Amazon.

How a PPC works depends on whether buyers depend on M to discover S. If they do,

then with this restriction in place, S will always be willing to stay on M provided f ≤ v− c,
since it cannot get any profit if it delists. As a result, S sets pd = pm = v and M sets

f = v − c, so M extracts the maximum profit Π = v − c, which is always strictly more than

what it would get without a PPC. Thus, M will always impose a PPC, which results in

higher direct prices for buyers.

Things are less obvious when buyers don’t depend on M to discover S since then S has

the option of rejecting M ’s offer and still making positive profit by just selling directly. Still,

without any uncertainty, a PPC is still always better for M (we show this in the appendix).

Indeed, the PPC ensures that M ’s fee does not lead to any distortion (via leakage), so the

transaction fee acts like a fixed fee. Given S does not want to induce leakage, it sets both

its prices at v, and M ’s fee is just pinned down by making S indifferent between listing on

M and not listing. This means M can extract the maximal possible surplus subject to S

being willing to participate—there is no downside to imposing a PPC.

To see how a tradeoff from imposing a PPC can arise, we introduce asymmetric informa-

tion about the nature of switching cost between the marketplace and the seller. The simplest

way to do so is by assuming that with probability q buyer switching costs are distributed

according to G (.) (the baseline state), and with probability 1− q switching costs are infinite

for all buyers, so none would ever switch (the no-switching state). M does not know which

of the two states of the world prevails when it sets its fee (and potentially a PPC), but S

does when it considers whether or not to accept M ’s offer.
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Suppose M imposes a PPC. If S lists, it must set pd = pm = v to comply with the PPC

and it obtains v−c−f . If S delists, it obtains its normal payoffs maxc≤pd≤v {(pd − c)G (v − pd)}
in the baseline state (probability q) and zero in the no-switching state (probability 1 − q).
Thus, M has two choices when setting its transaction fee:

� set f = v− c, so S only accepts the offer in the no-switching state, resulting in profits

for M of (1− q) (v − c).

� set f = v− c−maxc≤pd≤v {(pd − c)G (v − pd)}, so S always accepts the offer, resulting

in profits for M of v − c−maxc≤pd≤v {(pd − c)G (v − pd)}.

Consequently, M ’s overall profits under the PPC are

Π∗PPC = max

{
v − c− max

c≤pd≤v
{(pd − c)G (v − pd)} , (1− q) (v − c)

}
.

If M does not impose the PPC, then S always accepts the contract and M ’s profits are

Π∗ = max
f≤v−c

{f (q (1−G (v − p∗d (f))) + (1− q))}

= max
f≤v−c

{f (1− qG (v − p∗d (f)))} .

These expressions show that when q < 1, imposing the PPC has a downside: it forces M

to either set a high fee and thereby not make any sales with probability 1− q, or set a lower

fee that ensures the seller always participates. If instead M does not impose PPC, the seller

always participates and M always makes sales even if it maintains the highest possible fee

f = v − c, provided switching costs are not too low in the baseline state. This means that

it is now possible for imposing PPC to be a dominated strategy. We confirm this with the

same uniform distribution for G as in the baseline model.

Proposition 4. Suppose G (s) = s
µ

for s ∈ [0, µ]. The marketplace prefers not to impose a

PPC if and only if q < 1
2

and µ > v−c
2

. Otherwise, it prefers to impose a PPC.

The downside of imposing a PPC is that it forces the seller to choose between participating

or not, given the seller loses its ability to shift some transactions to its direct channel when

the fee turns out to be too high. By contrast, without a PPC the seller always participates

and can induce demand for M in both states, even at high fees.

To see how this logic plays out, consider the case in which 1 − q is sufficiently high so

that M prefers to set f = v − c under a PPC, so that the seller only accepts the offer in

the no-switching state. In this case, M can do strictly better without a PPC by also setting
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f = v− c: this extracts the same profit as under PPC in the no-switching state, but obtains

additional profit in the baseline state provided not all buyers in that state switch to purchase

directly when f = v − c (this is true whenever the switching costs in the baseline are high

enough, i.e., µ > v−c
2

). If q is higher but still less than one-half, the logic extends to the case

when M prefers to attract the seller in both states under PPC, given to do so requires M

set its fee sufficiently low.

Another reason M may prefer not to impose a PPC is if it risks being found anti-

competitive by the relevant authorities, something which applies to large and dominant

marketplaces.13

For these reasons, marketplaces may prefer to discipline sellers less explicitly, which is

something the next section explores.

5.5 Competing sellers and steering

Thus far we have assumed the marketplace attracts a single seller. As discussed in the

baseline setting, this could capture the idea that the marketplace has many different sellers,

each of which is in a different product or service category, so they can be treated separately.

In this section we explore whether a marketplace would want to host a second competing

seller and the impact seller competition has on leakage. In doing so, we will also consider

the possibility that the marketplace can steer buyers towards the seller that induces less

leakage. For example, CoachUp, a marketplace connecting fitness enthusiasts with private

coaches for many different sports, provides preferential treatment in its listings to coaches

that conduct more repeat transactions through the marketplace.

To analyze seller competition and steering in a tractable way, we suppose there are only

two sellers, one of which is the same as in the benchmark case (the high-quality seller), and

the other whose product is valued at u, where c ≤ u ≤ v (the low-quality seller). The reason

to allow for vertically differentiated sellers is to make the steering decision less trivial. If

u = v, so the two sellers are identical, then M never loses anything by steering towards the

seller that induces less leakage, thereby inducing the sellers to not undercut in the direct

channel at all. As a result, M can charge its maximum fee (i.e. f ∗ = v − c) and obtain

maximum profits. However, when u < v, if M charges f ∗ = v − c, then it may lose the

ability to credibly prevent the high-quality seller from inducing leakage if the low-quality

seller find it unprofitable to sell on M at such a high fee. The model is otherwise the same

as the baseline setting.

13As analyzed in Edelman and Wright (2015), the use of PPCs by large marketplaces raises competition
and regulatory concerns.
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We first treat the case when M cannot steer buyers, before exploring the implications of

M being able to steer buyers to one of the sellers by hiding the other. We will use the usual

asymmetric Bertrand tie-breaking rule throughout: when buyers are indifferent between

buying from the high-quality and low-quality seller, they choose the high-quality seller.

5.5.1 Competition without steering

Even without steering, allowing for two competing but vertically differentiated sellers

makes the analysis of leakage considerably more complicated. Fundamentally, this is because

competition between sellers in the direct market can lead to more leakage than a single seller

(the high-quality one) would optimally want to induce. Despite the added complications, we

are able to prove the following results.14

Proposition 5. Suppose there are two competing sellers, a high-quality seller with value v

and a low-quality seller with value u ≤ v, and switching costs are distributed according to

G (s) = s
µ

with s = µ. In equilibrium, the high-quality seller always makes all sales on both

channels. The marketplace’s profit with two competing sellers is always weakly lower than

the marketplace’s profit with the high-quality seller only (i.e. the baseline), and indeed is

weakly decreasing in u.

The proposition shows that in the absence of steering, M is always weakly worse off

with competing sellers. Indeed, M ’s profits are the same as in the case with just the high-

quality seller only when u− c ≤ v−c
2

and µ ≥ 2 (u− c), i.e. when the low-quality seller is a

sufficiently weak competitor and the switching costs are high enough so that leakage is not

too serious of an issue. Otherwise, introducing competition always hurts M—and so does

making the low-quality seller more competitive, i.e. increasing u. This runs counter to the

usual intuition that marketplaces benefit from introducing more competition among their

sellers in the absence of any innovation incentives.

To understand this result, note that for the range of M ’s fee where the low-quality seller

constrains the pricing of the high-quality seller (i.e. when f ≤ u− c), competition pins down

the high-quality seller’s prices (phm = c+ f + v − u and phd = c+ v − u), thus increasing the

difference between its price on M and its direct price relative to the case when the high-

quality seller is a monopolist (recall from the baseline that was only pm − pd = min
{
f
2
, µ
}

).

This “involuntary” leakage makes M strictly worse off. Otherwise, the low-quality seller

14The proof in the appendix contains the full equilibrium characterization, including M ’s optimal fee and
profits. Using those expressions, it is easily seen that M ’s optimal fee is weakly increasing and its profit is
increasing in the switching cost parameter µ, consistent with Proposition 1 for the baseline setting.
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doesn’t constrain the high-quality seller’s price, which is the case when the low-quality seller

is a sufficiently weak competitor and the switching costs are high enough.

By the same logic, when u decreases, the competitive pressure exerted by the low-quality

seller is lower, so the high-quality seller has more market power, implying it can adjust prices

in a way that induces less leakage, which benefits M . When u is sufficiently low and the

switching costs are high enough, the presence of the low-quality seller becomes irrelevant

and the outcome is the same as that with the high-quality seller only.

The bottomline is that without any other instrument available to the marketplace, com-

petition among sellers exacerbates the leakage issue. By pinning down seller prices on and

off the marketplace, competition among sellers reduces the marketplace’s ability to influence

each individual seller’s prices (via its transaction fee) to induce less leakage.

5.5.2 Vertically differentiated sellers and steering

We now extend the above analysis to the case M can steer buyers by only showing one of

the two sellers depending on their respective prices. In order to explore steering, we naturally

focus on the interpretation of our model in which buyers only know about the sellers if they

discover them first on M (otherwise the analysis is the same as in the previous subsection).

Once a seller is shown on M , buyers become aware of it, and so also know the seller’s price in

the direct channel. The reliance on M for discoverability means M can leverage competition

between sellers to discipline them from undercutting too much in the direct channel.15

Specifically, given f and a set of seller prices, M ’s objective is simply to maximize the

number of transactions on M . This means it will show the seller with the lowest pm−pd, i.e.

which induces the least amount of leakage, subject to the constraint that buyers obtain non-

negative surplus purchasing from the seller shown by M . This is the key difference relative

to the previous setting with no steering: here, the two sellers are competing to minimize the

difference between their direct price and their price on M , as opposed to competing in price

on each channel.

To be precise, we assume that M makes its steering decision in the following way, given

prices
(
plm, p

l
d

)
set by the low-quality seller and

(
phm, p

h
d

)
set by the high-quality seller:

� If both sellers are offering non-negative surplus to buyers on M (i.e. if plm ≤ u and

phm ≤ v), then show the seller with the lowest difference between price on M and direct

price. If both sellers have the same difference (i.e. if plm − pld = phm − phd), then show

the high-quality seller.

15Unlike the case of the price-parity clause analyzed in Section 5.4, here M cannot commit to hide a seller
if it induces some leakage. Rather, M decides which seller(s) to show based on the prices they set. As a
result, there may be leakage in equilibrium as we show below.
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� If only one seller is offering non-negative surplus to buyers on M , then show that seller.

� If neither seller is offering non-negative surplus to buyers on M (i.e. if plm > u and

phm > v), then show the high-quality seller.

In the first case above, M is indifferent between showing either seller. Breaking the tie

in favor of the high-quality seller does not have any impact on M ’s profit in the equilibrium

of the full game.

In the third case above, M is indifferent between showing either seller or showing neither,

because in all cases it makes zero profits—no buyers are willing to purchase on M from

either seller. This tie-breaking assumption does have an impact on the overall equilibrium,

by ensuring that M will never set f > v − c when f is already high enough that the low-

quality seller cannot make non-negative total profits and so is irrelevant. This treatment is

consistent with the baseline setting with a monopoly seller in which M never sets f > v−c.16

The need to rely on M for being discovered and M ’s ability to steer also imply that here

sellers may be willing to incur losses on M , which are then recouped in the direct channel,

provided the total profit is non-negative. For example, if f > u − c, then the low-quality

seller loses money on sales via M , but is willing to compete to be recommended as long as

there exists pld ≤ u such that

(
pld − c

)
G
(
u− pld

)
+ (u− c− f)

(
1−G

(
u− pld

))
≥ 0.

In this case, the low-quality seller maximizes its chances of being shown by setting plm = u

and setting pld as high as possible subject to the non-negative profit constraint above. The

derivation of the equilibrium will have to account for this subsidization strategy. Of course,

this strategy no longer works if f is sufficiently large. Then the low-quality seller cannot

make non-negative total profits, in which case it sets plm > u and is effectively irrelevant, i.e.

the high-quality seller acts as a monopolist since it knows that it will get recommended by

M no matter what (given our assumptions above).

We can fully characterize the equilibrium once we make our standard distributional as-

sumption on switching costs. Relegating the details of the equilibrium characterization to

the appendix, we obtain the following proposition.

Proposition 6. Suppose there are two competing sellers, a high-quality seller with value

v and a low-quality seller with value u ≤ v, switching costs are distributed according to

16Alternatively, we could assume that when neither seller is offering non-negative surplus to buyers that
purchase via the marketplace, M does not show either seller. In Online Appendix E, we redo the analysis
in this section with this alternative assumption and show Proposition 6 continues to hold, even though the
precise expressions for the optimal fee and M ’s profit change somewhat.
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G (s) = s
µ

with s = µ, and the marketplace can steer buyers to either seller. In equilibrium,

the high-quality seller always makes all sales on both channels. The marketplace’s profit is

always weakly higher than both the profit with two competing sellers and no steering, and the

profit with the high-quality seller only (i.e. the baseline). Moreover, the marketplace’s profit

is weakly increasing in u.

Proposition 6 shows that M ’s profit is always weakly higher with steering. Note, however,

that this is not entirely obvious a priori, since M cannot commit to steer when setting f .17

The reason for this result is that sellers compete to get favored by M , which means they

have an incentive to reduce leakage, which always benefits M . We show in the proof of

Proposition 6 that, fixing u, if the switching cost µ is high enough, there is always positive

leakage in equilibrium. However, when µ is low enough, there is no leakage. This is in

contrast to the case without steering, where there is always positive leakage in equilibrium.

Taken together with Proposition 5, Proposition 6 implies steering is crucial for the intro-

duction of a competing seller to benefit M .18 Indeed, recall that without steering, M ’s profit

was weakly decreasing in the competitiveness of the low-quality seller (measured by u), and

therefore it was lower with competing sellers than with a monopoly seller. By contrast, with

steering, M ’s profit is now weakly increasing in the competitiveness of the low-quality seller,

so M always benefits from its presence (relative to the baseline monopoly seller case).

To better understand why the effect of seller competition on M ’s profit changes with

steering, it is useful to consider two limit cases. When u→ c, the low-quality seller becomes

irrelevant, so the optimal fee f ∗ and M ’s profit Π∗ are the same as without competition,

and this would be true with or without steering. On the other hand, when u → v, i.e. the

two sellers’ products become perfect substitutes, both sellers end up setting the same price

on and off M in an effort to get recommended, so there is no leakage, and M optimally

sets f ∗ = v − c to extract the entire surplus. This last result contrasts to the case without

steering, in which the equilibrium prices are pm = c+ f and pd = c when u→ v, so there is

positive leakage still.

The bottomline is that adding the ability to steer buyers among sellers allows the mar-

ketplace to reverse the negative impact that competition among sellers had on leakage in

17Hagiu et al. (2022) show how a platform can benefit from the ability to steer consumers towards its
own product in a setting where consumers can switch and buy directly if the price on the platform is too
high. The threat of steering relaxes the leakage constraint on the platform’s commission, thus increasing its
profit. Our setting here is different since steering is among different (vertically differentiated) third-party
sellers rather than between a seller and the platform’s own product, and steering arises in equilibrium in our
setting.

18In Online Appendix F, we confirm this also holds in a (simpler) variant of our setup with competing
sellers, in which the low-quality seller is only active on M , i.e. does not have a direct channel.
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the absence of steering. With steering, the marketplace is able to benefit from increased

competition among sellers while keeping leakage in check.

6 Managerial implications

While our analysis has focused on the solutions a platform can employ to deal with

leakage, it is useful to start by asking what conditions make leakage more likely to be a

concern. These can be thought of as factors that determine how high are switching costs

(e.g. the parameter µ that we focused on):

a) Propensity of repeat transactions with the same counterparty

Repeated transactions between the same counterparties not only increase the amount of

transaction fees the parties can save by completing transactions off the marketplace, but

they also make it possible to get to know one another, build trust, and so be more willing

to transact directly. Marketplaces for babysitters (e.g. Care.com), dog walkers (e.g. Wag!),

coaches (e.g. CoachUp), tutors (e.g. Preply), home cleaners (e.g. Handy), and gardeners

(e.g. Lawn Love) all grapple with this problem.

b) Ability to clearly specify transaction scope on the marketplace

For some services, such as fixing a car or resolving electrical or plumbing issues, the parties

have to meet and communicate before they settle on what the transaction will involve (e.g.

inspect a problem and give a quote for the work required). In such cases, leakage becomes a

lot easier as the parties share information, gain trust and can make payments directly before

the marketplace is ever in a position to try to charge a fee for the transaction.

c) In-person vs. remote/online transactions

Other things equal, leakage is harder to avoid when transactions are conducted in-person

(TaskRabit) than online (Fiverr). The reasons are obvious: in-person meetings make it easier

for the parties to share information, gain trust, and coordinate payment in cash, or via one

of the many available peer-to-peer payment apps (e.g. PayPal, Venmo or WeChat).

After determining the severity of the leakage problem, companies and managers can

prioritize the various solutions to it based on our analysis.

In general, providing transaction benefits beyond discovery should be the first and main

priority. As we have shown, such benefits are particularly effective when switching costs to

transacting directly are either very low or very high, i.e. when leakage is either very easy or

very difficult—this can be determined using the criteria laid out above. When leakage is very

easy, providing lots of transaction benefits is crucial for marketplaces to be able to extract

any transaction fees. When leakage is very difficult, marketplaces should also invest a lot

in transaction benefits because the marketplace can almost fully extract the sellers’ margin,
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which is increased by transaction benefits. By contrast, when the likelihood of leakage is

moderate, marketplaces’ incentives to invest in transaction benefits are lower: the moderate

switching costs protect them sufficiently from leakage so that they can slack off investing, and

the margin extracted from sellers is not large enough to provide strong investment incentives.

Finally, in all cases, in addition to offering transaction benefits, marketplaces can and should

also add any features that increase buyer switching costs to the relevant direct channels (e.g.

loyalty programs, group discounts for multiple buyers as pioneered by Pinduoduo).

Second, marketplaces should encourage seller competition, provided their steering of

buyers is sufficiently effective to make competition reduce leakage. Specifically, market-

places should steer buyers towards sellers with direct prices that do not induce too much,

if any, leakage. In settings where direct prices are not observed but consumers make repeat

transactions, this means steering towards sellers with a high number of repeat transactions

conducted through the marketplace. In our model, we have assumed steering can perfectly

conceal sellers which are not shown from buyers. In reality, however, steering is not perfect.

So marketplaces need to determine how effective their steering efforts are in influencing buy-

ers’ awareness and shopping behavior, which can be done via A/B testing. The more effective

steering is, the closer we are to the situation in Section 5.5, where competition leads to less

leakage and higher marketplace profits. In these situations, marketplaces should make design

decisions that increase the competitive intensity among sellers (e.g. emphasizing prices when

showing sellers’ offerings to buyers). If on the other hand steering is not very effective, then

more intense competition leads to more leakage and lower marketplace profits, as in Section

5.5. In these situations, marketplaces are better off reducing the competitive intensity among

sellers (e.g. by emphasizing non-price factors).

That being said, in practice there are other reasons why a marketplace may still want to

allow some seller competition, even if steering is not possible. For instance, rival sellers may

produce horizontally differentiated varieties of the same product; the increased variety may

induce more buyers to come to the marketplace in the first place. In these situations, our

finding implies marketplaces should take into account that increased head-to-head compe-

tition among sellers will exacerbate leakage when weighing up how much seller competition

they wish to allow.

Third, limiting communication between participants can sometimes be effective, but only

up to a point. By limiting communication, a platform makes it more difficult for its buyers

and sellers to coordinate on taking transactions off the platform, but it also makes it more

difficult for buyers to evaluate the desirability of the sellers’ products. With this tradeoff in

mind, limiting communication is effective in combatting leakage either when the resulting

loss of information is very low (so sellers don’t have to worry much about buyers being
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uncertain about their products’ desirability), or when the loss of information is very high.

The latter possibility may sound surprising, but it arises because in this case, by limiting

communication, marketplaces force sellers to lower their on-platform prices enough that even

buyers who are uncertain about product desirability end up buying. In other words, limiting

communication works either when it does not have a strong effect on buyer information about

sellers’ products, or when it has such a strong effect that sellers have no choice but to account

for it by lowering their prices. Needless to say, in practice, limiting communication between

buyers and sellers can backfire by leading to buyer and seller resentment (and therefore even

more leakage), so marketplaces should only consider it if the scope for leakage (based on the

factors discussed above) is very high.

Fourth, while imposing price parity would in principle seem like the cleanest way to

eliminate leakage, it has a downside in forcing sellers to make an all-or-nothing choice:

either they are all-in and conduct all of their transactions on the marketplace (they cannot

use prices to shift transactions to their direct channel if they accept the contract) or they do

not participate on the marketplace at all (if they reject the contract). If each type of seller

knows better than the marketplace the propensity of its buyers to switch to buy directly,

it can be better for the marketplace not to force a seller’s hand since doing so risks losing

sellers as a result (or requires the marketplace to set a much lower fee to keep all sellers on

board). This is especially true where the scope for leakage is anyway not very strong.

Fifth, where the scope for leakage is high, and the above strategies are not very effective

in dealing with it, marketplaces should consider changing their business model to one based

on referral fees instead of transaction fees (as Capterra, Thumbtack and others have done).

This is a more drastic measure, which has the advantage of sidestepping leakage altogether,

but at the cost of giving up the ability to extract more value from a seller that has particularly

high buyer demand (i.e. high likelihood of buyers purchasing or high dollar spend). Less

drastically, marketplaces can use both referral and transaction fees, something they should

consider when the propensity for leakage is neither extremely high or extremely low. In this

case, an added benefit of using both fees is that the referral fee ensures participating sellers

have a sufficiently high buyer demand, which in turn means the transaction fee can also

be higher. Referral fees are preferrable to fixed access fees because they at least take into

account the uncertainty over the number of potential buyers that are exposed to the seller

via the marketplace. However, if referral fees are not feasible (e.g. because it is difficult

to meter/monitor how many buyers are exposed to a given seller), then marketplaces can

consider relying mainly on fixed access fees.

Finally, we should note an important pitfall that fast-growing marketplaces (and their

investors) need to be aware of when evaluating the risk of leakage. Initially, when a market-
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place is growing fast and users on either side are mainly discovering new transaction partners

on the other side, rather than doing repeat transactions with existing partners, leakage does

not appear to be a big issue and may lead to complacency, e.g. under-investment in the

features designed to minimize leakage incentives. Once users have settled down on a few

counterparts they transact with often, then the leakage problem can become a lot more se-

rious. Consequently, marketplaces should try to think about getting the right strategies in

place for combatting leakage from the very beginning.

7 Future directions

Some of our results suggest natural avenues for empirical researchers to pursue. We

have provided predictions regarding a marketplace’s choice of strategy to combat leakage

(investment in transaction benefits, whether communication is limited, the type of fees used,

whether price parity clauses are adopted, whether competition between sellers is encouraged),

depending on various underlying factors (the value of transactions, the level of switching

costs, the importance of uncertainty in buyer demand, the ability to steer buyers among

competing sellers and the degree of substitutability between these sellers’ products)—some

of these predictions can and should be tested.

Another interesting avenue to explore (theoretically) is the idea that leakage could also

create an adverse selection problem on marketplaces. If consumers prefer to buy repeatedly

from the same seller once their product or service has been proven to be good, and if sellers

have a capacity constraint, then high-quality sellers will be more likely to leave the market-

place after they have built a large-enough base of buyers. Consequently, the marketplace

will be left with a disproportionate fraction of low-quality sellers, at which point buyers

will stop using the marketplace. This was exactly the problem that caused the demise of

Homejoy, a marketplace for home cleaners: the most popular cleaners left the marketplace

once they had amassed a sufficient number of customers that they could serve regularly. It

would be interesting to explore whether adverse selection created by leakage can make it

optimal for marketplaces to adopt a more radical change in business model, namely to stop

being marketplaces altogether, and provide the product or service themselves instead.

One can also extend our analysis to competing marketplaces. To the extent that fees

are pinned down by competition between marketplaces and sellers do not multihome across

marketplaces (or if they do, they can set separate direct prices to target buyers from each

marketplace), one could apply our equilibrium analysis of seller pricing in the subgame for a

given fee to obtain the effects of leakage. However, the way in which competition determines

marketplace fees, and the resulting effects on the choice of different strategies to address
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leakage will be more complicated than in our monopoly marketplace setting. This would be

an interesting direction that future research should explore.

Finally, ours is a static framework, which means we have not explicitly modeled the

possibility of return customers, which give a marketplace the option to adjust transaction

fees based on the number of times buyers return to purchase from the same seller on the

marketplace. For instance, CoachUp charges coaches transaction fees based on a sliding

scale depending on the number of sessions completed with the same athlete, as does Upwork

with respect to the value of the work, and Preply with respect to the value of tutoring done

within a month. It would be interesting to explore the effectiveness of such pricing strategies

in dealing with leakage.

8 Appendix

We include proofs of propositions not established in the text.

8.1 Proof of Lemma 1

If M were to set f > v− c, S would make a loss selling through M , and as a result would

simply set some price pm > v, so that it makes no sales on M .19 This in turn implies M

would make zero profits in this case. So we must have f ≤ v− c. And it must be that f > 0,

otherwise M makes no profits, which cannot be optimal.

Second, given f ≤ v − c, we must have pm = v. If pm > v, then S benefits (weakly)

from switching to pm = v, so that buying from S through M now gives buyers the same net

payoff as the outside option (zero). Indeed, buyers who were buying from S’s direct channel

will keep doing so. Meanwhile, if the buyers with the highest switching cost s = s were not

buying in the direct channel, then there is now a positive measure of buyers who were not

buying anything from S at pm > v and who will now buy at pm = v. If instead pm < v, then

S’s profits are

(pd − c)G (pm − pd) + (pm − c− f) (1−G (pm − pd)) ,

where G (pm − pd) = 0 whenever pm ≤ pd. In this case S can increase profits by slightly

increasing pm and pd by the same amount.

And third, S sets pd < v. Indeed, given pm = v and f > 0, S does better by shifting

from pd ≥ v to pd = v − ε, where ε < f : this shifts buyers with low enough switching cost

19Note that if we take the interpretation of our model in which S needs to be present on M in order to be
discovered by buyers, setting pm > v ensures no buyer purchases from S through M , yet S is discovered so
buyers can purchase from it in its direct channel.
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from M to the direct channel, where S’s margin is higher by f − ε (it no longer pays the fee

on those buyers).

8.2 Proof of Proposition 1

Given (5) and noting second-order conditions hold for any f > 0 and µ > 0, we have

that M solves

arg max
f

{
f

(
1− f

2µ

)}
= µ < 2µ.

Taking into account that f ≤ v − c, this implies the level of f ∗ and Π∗ given in Proposition

1.

First, note that Π∗ is always increasing in µ. To determine the direct price, note that if

µ ≤ v − c, then f ∗ = µ ≤ 2µ, so in this case using (4) we get p∗d = v − µ
2
. If µ ≥ v − c, then

f ∗ = v − c ≤ µ ≤ 2µ, so in this case using (4) we get p∗d = v − v−c
2

. Combining these two

results implies p∗d in Proposition 1. Clearly, p∗d is strictly decreasing in µ when µ < v − c,
but for µ ≥ v − c, p∗d is constant in µ.

The equilibrium extent of leakage is given by f∗

2µ
. Given f ∗ = min {µ, v − c}, the extent

of leakage is min
{

1
2
, v−c

2µ

}
. This is initially constant, and then decreasing in µ.

8.3 Proof of Proposition 2

With G (s) = s
µ

and K (b) = k
2
b2, we have

p∗d (f) =

{
v − µ if f ≥ b+ 2µ

v − 1
2

(f − b) if b ≤ f ≤ b+ 2µ
.

This implies that M ’s profit is

Π∗ = max
b≥0

b≤f≤v−c+b

Π (b, f) ,

where

Π (b, f) =


−kb2

2
if f ≥ b+ 2µ

f
(

1− 1
2µ

(f − b)
)
− kb2

2
if b ≤ f ≤ b+ 2µ

b− kb2

2
if f = b

.

Recall that we also have the constraint f ≤ v + b− c, since at any higher fee S will not
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want to list on M . The FOC for the middle expression implies

f ∗ = µ+
b

2
< 2µ+ b.

Thus, we have

Π (b) =


b− kb2

2
if b ≥ 2µ

(2µ+b)2

8µ
− kb2

2
if max {2µ− 2 (v − c) , 0} ≤ b ≤ 2µ

(v − c+ b)
(

1− v−c
2µ

)
− kb2

2
if 0 ≤ b ≤ max {2µ− 2 (v − c) , 0}

,

which we can optimize over b.

Suppose first µ ≤ v − c. Then

Π (b) =

{
b− kb2

2
if b ≥ 2µ

(2µ+b)2

8µ
− kb2

2
if 0 ≤ b ≤ 2µ

,

so

Π′ (b) =

{
1− kb if b ≥ 2µ

1
2
−
(
k − 1

4µ

)
b if 0 ≤ b ≤ 2µ

.

If k > 1
4µ

, then Π′′ (b) < 0 everywhere, so there is a unique maximizer given by

b∗ =


1
k

if 1
4µ
≤ k ≤ 1

2µ
1

2k− 1
2µ

if k ≥ 1
2µ

,

which leads to profits

Π∗ =


1
2k

if 1
4µ
≤ k ≤ 1

2µ
µk

2k− 1
2µ

if k ≥ 1
2µ

.

If k < 1
4µ

, then Π′ (b) is increasing in b over b ∈ [0, 2µ], and decreasing in b for b ≥ 2µ.

Since Π′ (0) = 1
2
> 0, the profit-maximizing choice of b is b∗ = 1

k
. The bottomline for the

case µ ≤ v − c:

b∗ =


1
k

if k ≤ 1
2µ

1
2k− 1

2µ

if k ≥ 1
2µ

,
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Now suppose µ > v − c. We have

Π′ (b) =


1− kb if b ≥ 2µ

1
2
−
(
k − 1

4µ

)
b if 2µ− 2 (v − c) ≤ b ≤ 2µ

1− v−c
2µ
− kb if 0 ≤ b ≤ 2µ− 2 (v − c)

Note that Π′ (b) is continuous in b.

Here too, there are two cases. If k ≥ 1
4µ

, then Π′ (b) is decreasing for all b, so Π′ (b) = 0

has a unique solution b∗, which is the maximizer of Π (b). The profit-maximizing b is

b∗ =


1
k

if 1
4µ
≤ k ≤ 1

2µ
1

2k− 1
2µ

if 1
2µ
≤ k ≤ 2µ−(v−c)

4µ(µ−(v−c))
1
k
− v−c

2kµ
if k ≥ 2µ−(v−c)

4µ(µ−(v−c))

and the maximum profit is

Π∗ =


1
2k

if 1
4µ
≤ k ≤ 1

2µ
µk

2k− 1
2µ

if 1
2µ
≤ k ≤ 2µ−(v−c)

4µ(µ−(v−c))

(v − c)
(

1− v−c
2µ

)
+ 1

2k

(
1− v−c

2µ

)2

if k ≥ 2µ−(v−c)
4µ(µ−(v−c))

If k < 1
4µ

, then Π′ (b) is decreasing for b ∈ [0, 2µ− 2 (v − c)], increasing for b ∈ [2µ− 2 (v − c) , 2µ],

and decreasing for b ≥ 2µ. And we have

Π′ (2µ− 2 (v − c)) = 1− 1

2µ
(v − c)− k (2µ− 2 (v − c))

> 1− 1

2µ
(v − c)− 1

4µ
(2µ− 2 (v − c))

=
1

2
> 0

So in this case the profit maximizing solution is b∗ = 1
k
.

The bottomline for the case µ > v − c:

b∗ =


1
k

if k ≤ 1
2µ

1
2k− 1

2µ

if 1
2µ
≤ k ≤ 2µ−(v−c)

4µ(µ−(v−c))
1
k
− v−c

2kµ
if k ≥ 2µ−(v−c)

4µ(µ−(v−c))

If µ > (v − c), then it is straightforward to verify that 1
2µ
≤ k ≤ 2µ−(v−c)

4µ(µ−(v−c)) is equivalent to
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1
2k
≤ µ ≤ µ, where

µ =
v − c

2
+

1

4k
+

√(
v − c

2

)2

+
1

16k2
.

And k ≥ 2µ−(v−c)
4µ(µ−(v−c)) is equivalent to µ ≥ µ. Note that

µ > max

{
v − c, 1

2k

}
.

Thus, we can write the optimal solution as a function of µ as follows:

� if µ ≤ v − c, then

b∗ =

{
1
k

if µ ≤ 1
2k

1
2k− 1

2µ

if µ ≥ 1
2k

,

� if µ > v − c, then

b∗ =


1
k

if µ ≤ 1
2k

1
2k− 1

2µ

if 1
2k
≤ µ ≤ µ

1
k
− v−c

2kµ
if µ ≥ µ

Distinguishing the cases v − c ≤ 1
2k

and v − c ≥ 1
2k

, it is easily seen that all these cases

collapse to

b∗ =


1
k

if µ ≤ 1
2k

1
2k− 1

2µ

if 1
2k
≤ µ ≤ µ

1
k
− v−c

2kµ
if µ ≥ µ

.

This implies

f ∗ =


b∗ if µ ≤ 1

2k

µ+ b∗

2
if 1

2k
≤ µ ≤ µ

v + b∗ − c if µ ≥ µ

p∗d =


v if µ ≤ 1

2k

v − µ(2kµ−1)
4kµ−1

if 1
2k
≤ µ ≤ µ

v+c
2

if µ ≥ µ

Π∗ =


1
2k

if µ ≤ 1
2k

µk

2k− 1
2µ

if 1
2k
≤ µ ≤ µ

(v − c)
(

1− v−c
2µ

)
+ 1

2k

(
1− v−c

2µ

)2

if µ ≥ µ

.
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8.4 Proof of Proposition 3

If qv < c, then ΠL (η) < 0 for all η ∈ [0, 1], so M chooses option 1 for all η ∈ [0, 1].

Suppose now qv > c. We have

ΠH (0) = 0 < ΠL (0) = qv − c.

and

lim
η→1

ΠH (η) > 0 > lim
η→1

ΠL (η) = −∞.

Furthermore, ΠH is obviously increasing in η and ΠL is decreasing in η:

dΠL

dη
= −(1− q) qv

(1− η)2

(
(2− η) qη + 2 (1− η)2)+ c (1− q) ,

which is negative under qv > c since (2− η) qη + 2 (1− η)2 > (1− η)2.

Thus, when qv > c, there exists a unique η∗ ∈ (0, 1) such that M prefers option 1

(ΠH (η) ≥ ΠL (η)) when η ≥ η∗ and option 2 (ΠH (η) ≤ ΠL (η)) when η ≤ η∗, where

η∗ =
qv (2− q)− c− q

√
(1− q) v (v − c)

qv (3 (1− q) + q2)− c
.

This means M ’s profits with communication banned are decreasing and then increasing in

η, with the minimum occurring at η = η∗. When η = 0, profits are qv − c, and when η = 1,

profits are q (v − c).
We now need to compare these profits to M ’s profit when it allows communication,

which is qΠ∗. First note that M prefers to ban communication when η > Π∗

v−c , regardless

of q. Indeed, η > Π∗

v−c implies ΠH (η) > qΠ∗ for all q > 0. Second, if v − c
q
≤ Π∗, then

ΠL (η) ≤ qΠ∗ for all η, so M prefers to ban communication if and only if η > Π∗

v−c . (Note

this includes the case in which qv − c < 0 noted at the start.) And third, if v − c
q
> Π∗,

then M also prefers to ban communication when η < ηL, where ηL > 0 is uniquely defined

by ΠL (ηL) = qΠ∗. In this case, if η∗ > Π∗

v−c , then M prefers to ban communication for all

η and q. Since limq→1 η
∗ = 1 and qv > c holds if q is close enough to one, this implies M

always prefers to ban communication if q is close enough to one.
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8.5 Proofs for the section on price parity clauses

First we prove the claim that imposing a PPC is always better for M when q = 1,

regardless of G (.). Indeed, with q = 1, the marketplace’s profits are

Π∗PPC = v − c− max
c≤pd≤v

{(pd − c)G (v − pd)} .

and

Π∗ = max
f≤v−c

{f (1− qG (v − p∗d (f)))} .

Denote M ’s optimal fee without a PPC by f ∗. We have

max
c≤pd≤v

{(pd − c)G (v − pd)} ≤ max
pd≤v
{(pd − c)G (v − pd) + (v − c− f ∗) (1−G (v − pd))}

= (p∗d (f ∗)− c)G (v − p∗d (f ∗)) + (v − c− f ∗) (1−G (v − p∗d (f ∗)))

and

v − c ≥ (p∗d (f ∗)− c)G (v − p∗d (f ∗)) + (v − c) (1−G (v − p∗d (f ∗))) .

Taking the difference between these last two inequalities, we obtain Π∗PPC ≥ Π∗PPC .

Next, we prove Proposition 4. Suppose G (s) = s
µ
. If q ≥ 1

2
, then

Π∗PPC = max

{
v − c−

{
(v−c)2

4µ
if µ ≥ v−c

2

v − c− µ if µ ≤ v−c
2

, (1− q) (v − c)

}

Π∗ =

{
µ
2q

if µ ≤ q (v − c)
(v − c)

(
1− q

2µ
(v − c)

)
if µ ≥ q (v − c)

.

And it is then easily verified that we have Π∗PPC ≥ Π∗ by looking in turn at the regions

µ ≤ v−c
2

, v−c
2
≤ µ ≤ q (v − c), and µ ≥ q (v − c).

If q < 1
2
, then

Π∗PPC = max

{
v − c−

{
(v−c)2

4µ
if µ ≥ v−c

2

v − c− µ if µ ≤ v−c
2

, (1− q) (v − c)

}

Π∗ = (v − c)
(

1− qmin

{
v − c
2µ

, 1

})
.

If µ ≤ v−c
2

, then

Π∗PPC = max {µ, (1− q) (v − c)} = (1− q) (v − c) = Π∗.
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If µ > v−c
2

, then

Π∗ = (v − c)− 2q
(v − c)2

4µ

Π∗PPC = max

{
v − c− (v − c)2

4µ
, (1− q) (v − c)

}
.

Clearly we have

(v − c)− 2q
(v − c)2

4µ
> v − c− (v − c)2

4µ

because q < 1
2
, and

(v − c)− 2q
(v − c)2

4µ
> (1− q) (v − c)

because v−c
2
< µ. Thus, we have Π∗ > Π∗PPC iff q < 1

2
and µ > v−c

2
.

8.6 Proof of Proposition 5

We begin by proving the following lemma.

Lemma 2. If u− c ≤ v−c
2

, then M ’s optimal fee and resulting profits are:

f ∗ =


µ
2

if µ ≤
(
4− 2

√
2
)

(u− c)
2 (u− c) if

(
4− 2

√
2
)

(u− c) < µ ≤ 2 (u− c)
µ if 2 (u− c) < µ ≤ v − c

v − c if µ > v − c

Π∗ =



µ
4

if µ ≤
(
4− 2

√
2
)

(u− c)
2 (u− c)

(
1− u−c

µ

)
if
(
4− 2

√
2
)

(u− c) ≤ µ ≤ 2 (u− c)
µ
2

if 2 (u− c) ≤ µ ≤ v − c
(v − c)

(
1− v−c

2µ

)
if µ ≥ v − c

.

If v−c
2
≤ u− c ≤ v − c, then M ’s optimal fee and resulting profits are:

f ∗ =


µ
2

if µ ≤ 2 (v − c)
(

1−
√

v−u
v−c

)
v − c if µ > 2 (v − c)

(
1−

√
v−u
v−c

)

Π∗ =


µ
4

if µ ≤ 2 (v − c)
(

1−
√

v−u
v−c

)
(v − c)

(
1− u−c

µ

)
if µ ≥ 2 (v − c)

(
1−

√
v−u
v−c

)
Proof of Lemma 2. In equilibrium, it must be that the high-quality seller (Sh) makes
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all sales on both channels. Indeed, suppose the low-quality seller (Sl) makes sales at a price

pld ∈ [c, u] in the direct channel. Then Sh can profitably deviate by setting phd = pld + v−u ∈
[c+ v − u, v] and keeping phm unchanged. This will not affect its profit on M since it doesn’t

induce any more buyers to switch to buy directly, and allows it to make additional profit

from the direct channel. And similarly if Sl makes sales on M at a price plm ∈ [c+ f, u]. This

means there is no way for Sl to make profitable sales anywhere in equilibrium. Specifically,

it can’t be that it makes a loss in one channel since it would need to make profits in the

other channel, which is not possible. Thus, Sh makes all sales.

Given f , Sl’s prices are pld = c and plm = c + f . Note that when f > u − c, we have

plm > u, so Sl becomes irrelevant on M in that case.

In equilibrium, we must have f ≤ v − c. Otherwise, if f > v − c, then Sh would set

phm > v to avoid selling at a loss on M (and Sl would set plm > u), resulting in zero profits

for M .

Next, for Sh, we can restrict attention to phd ≤ phm without loss of generality. Indeed, if

phd > phm, then no buyer would buy from Sh in the direct channel, so Sh can do at least as well

with phd ≤ phm. And we must have phm ≤ min {c+ f + v − u, v} and phd ≤ min {c+ v − u, v} =

c+ v − u, otherwise Sl could deviate and make some positive profits. Sh’s profits are

(
phd − c

)
G
(
phm − phd

)
+
(
phm − c− f

) (
1−G

(
phm − phd

))
.

For this to be an equilibrium, we must have phm = min {c+ f + v − u, v} or phd = c+ v − u,

otherwise Sh could increase profits by raising both prices by the same very small amount.

Suppose the binding constraint is phd = c+v−u and we have phm < min {c+ f + v − u, v}.
Then the margin that Sh makes on direct channel sales is v − u, while the margin on

sales through M is phm − c − f , which is strictly less than v − u, because phm − c − f <

min {v − u, v − c− f}. This means that Sh can strictly increase profits by slightly increasing

phm, which shifts sales to the higher margin channel. Thus, in equilibrium, we must have

phm = min {c+ f + v − u, v}.
There are then two main cases.

1. If f ≤ u− c, then phm = c+ f + v − u and Sh solves

max
phd≤c+v−u

{(
phd − c

) min
{
c+ f + v − u− phd , µ

}
µ

+ (v − u)

(
µ−min

{
c+ f + v − u− phd , µ

}
µ

)}
.

It is easily verified that the solution is always phd = c+ v−u, which implies that in this
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case M ’s profits are

Π (f) = f
(
1−G

(
phm − phd

))
= f

(
1− min {f, µ}

µ

)
.

2. If f > u− c, then phm = v and Sh solves

max
phd≤c+v−u

{(
phd − c

) min
{
v − phd , µ

}
µ

+ (v − c− f)

(
µ−min

{
v − phd , µ

}
µ

)}
.

There are two subcases:

� If µ ≤ u− c, then Sh optimally sets phd = c+ v − u, resulting in profits v − u for

Sh and zero for M .

� If µ ≥ u− c, then Sh optimally sets

phd (f) =


c+ v − u if u− c < f ≤ 2 (u− c)
v − f

2
if 2 (u− c) ≤ f ≤ 2µ

v − µ if f ≥ 2µ

,

resulting in profits for M of

Π (f) =


f
(

1− u−c
µ

)
if u− c < f ≤ 2 (u− c)

f
(

1− f
2µ

)
if 2 (u− c) ≤ f ≤ 2µ

0 if f ≥ 2µ

.

We now proceed to solve for M ’s optimal choice of f .

Suppose µ ≤ u − c. Then M must set f ≤ u − c to obtain positive profits, so it solves

maxf≤u−c

{
f
(

1− f
µ

)}
. This implies f ∗ = µ

2
< u− c and Π∗ = µ

4
.

Now consider µ > u− c. There are three relevant choices for M to obtain positive profits

when µ > u − c: (i) M can set f ≤ u − c and obtain f
(

1− f
µ

)
, so the optimal fee on

this interval is f = min
{
µ
2
, u− c

}
; (ii) M can set u − c ≤ f ≤ min {2 (u− c) , v − c} and

obtain f
(

1− u−c
µ

)
, so the optimal fee on this interval is f = min {2 (u− c) , v − c}; (iii) M

can set 2 (u− c) ≤ f ≤ min {2µ, v − c} and obtain f
(

1− f
2µ

)
, which is only possible when

2 (u− c) ≤ min {v − c, 2µ}.
We need to distinguish two cases for µ > u− c.

1. First suppose v− c ≤ 2 (u− c). And suppose µ ≤ 2 (u− c). Then M chooses between

(i) µ
4

(obtained by setting f = µ
2
) and (ii) (v − c)

(
1− u−c

µ

)
(obtained by setting
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f = v− c). Comparing (i) and (ii), M will set f ∗ = µ
2

if µ < 2 (v − c)
(

1−
√

v−u
v−c

)
and

otherwise will set f ∗ = v− c. Note given u lies between c and v, it can be verified that

u− c ≤ 2 (v − c)
(

1−
√
v − u
v − c

)
≤ 2 (u− c) .

Next suppose µ > 2 (u− c). Then M chooses between (i) (u− c)
(

1− u−c
µ

)
and (ii)

(v − c)
(

1− u−c
µ

)
, and clearly will choose the latter so f ∗ = v−c in this case too. Thus,

we have confirmed the results in the Proposition when µ > u− c and v− c ≤ 2 (u− c).

2. Second, suppose v − c > 2 (u− c). We can first consider the case µ ≤ 2 (u− c). So

M can choose between (i) µ
4

and (ii) 2 (u− c)
(

1− u−c
µ

)
. (Note M ’s profit f

(
1− f

2µ

)
under (iii) is decreasing in f for f ≥ 2 (u− c) under these assumptions, which is

why M can ignore option (iii)). Comparing (i) and (ii), M will set f ∗ = µ
2

if µ <

2
(
2−
√

2
)

(u− c) and otherwise will set f ∗ = 2 (u− c). Next suppose µ > 2 (u− c).
Then M chooses between (i) (u− c)

(
1− u−c

µ

)
, (ii) 2 (u− c)

(
1− u−c

µ

)
and (iii) f ∗ =

min {µ, v − c} with M obtaining either µ
2

and (v − c)
(

1− v−c
2µ

)
respectively. Clearly

(ii) dominates (i). If 2 (u− c) < µ < v − c, then f ∗ = µ under option (iii) so M

obtains µ
2

which is better than option (ii) given µ > 2 (u− c). Finally, if µ > v − c,
then f ∗ = v− c under option (iii) so M obtains (v − c)

(
1− v−c

2µ

)
which is better than

option (ii) given that f
(

1− f
2µ

)
is increasing in f at f = v − c when µ > v − c.

Thus, we have proven each of the different cases for f ∗ and Π∗ given in the text of the

lemma.

�

We can now use the expressions of f ∗ and Π∗ provided in the Lemma 2 to prove Propo-

sition 5. To determine the effect of u on M ’s profits, suppose first u − c ≥ v−c
2

. Note that

2 (v − c)
(

1−
√

v−u
v−c

)
is decreasing in u. If µ < 2 (v − c)

(
1−

√
v−u
v−c

)
, then a slight increase

in u leaves Π∗ unchanged. If µ ≥ 2 (v − c)
(

1−
√

v−u
v−c

)
, then a slight increase in u decreases

Π∗. Now suppose u − c ≤ v−c
2

. If µ ≤
(
4− 2

√
2
)

(u− c) or µ > 2 (u− c), then a slight in-

crease in u leaves Π∗ unchanged. If
(
4− 2

√
2
)

(u− c) < µ ≤ 2 (u− c), then a slight increase

in u decreases Π∗ because 2 (u− c)
(

1− u−c
µ

)
is decreasing in (u− c) when µ ≤ 2 (u− c).

Thus, in all cases Π∗ is weakly decreasing in u. And it is easily seen that Π∗ converges to

the expression of M ’s profit with a monopoly high-quality seller given by (5) when u→ c.
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8.7 Proof of Proposition 6

We start by proving the following lemma.

Lemma 3. If u− c ≤ v−c
2

, then M ’s optimal fee and resulting profits are

f ∗ =


u− c if µ ≤ 2 (u− c)
µ if 2 (u− c) < µ ≤ v − c

v − c if µ > v − c

Π∗ =


u− c if µ ≤ 2 (u− c)
µ
2

if 2 (u− c) ≤ µ ≤ v − c
(v − c)

(
1− v−c

2µ

)
if µ ≥ v − c

. (8)

If v−c
2
≤ u− c ≤ v − c, then M ’s optimal fee and resulting profits are

f ∗ =

{
u− c if µ ≤ (v−c)2

2(v−u)

v − c if µ > (v−c)2
2(v−u)

Π∗ =

 u− c if µ ≤ (v−c)2
2(v−u)

(v − c)
(

1− v−c
2µ

)
if µ ≥ (v−c)2

2(v−u)

(9)

Proof of Lemma 3. As explained in the main text, given f and seller prices, M

recommends the seller that induces the least amount of leakage (i.e. with the lowest non-

negative difference between price on M and direct price), subject to offering non-negative

utility to buyers that buy via M . We define pld (f) as the direct price that maximizes the

low-quality seller’s chance to get recommended while allowing it to make non-negative total

profits:

pld (f) = max
pd≤u

(pd−c)
min{u−pd,µ}

µ
+(u−c−f)

(
1−min{u−pd,µ}

µ

)
≥0

{pd}

Indeed, the low-quality seller’s (i.e. Sl’s) best chance to get recommended is when it sets

plm = u and pld as close as possible to u, while still making non-negative profits. We define

phd (f) in the same way for the high-quality seller (Sh):

phd (f) = max
pd≤v

(pd−c)
min{v−pd,µ}

µ
+(v−c−f)

(
1−min{v−pd,µ}

µ

)
≥0

{pd}
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First, we prove that20

pld (f) =



u if f ≤ u− c

u− f−
√
f2−4µ(f−(u−c))

2
if

µ ≤ u− c ≤ f or

µ > u− c and u− c ≤ f ≤ 2µ
(

1−
√

1− u−c
µ

)
−∞ if µ > u− c and f > 2µ

(
1−

√
1− u−c

µ

)
and

phd (f) =



v if f ≤ v − c

v − f−
√
f2−4µ(f−(v−c))

2
if

µ ≤ v − c ≤ f or

µ > v − c and v − c ≤ f ≤ 2µ
(

1−
√

1− v−c
µ

)
−∞ if µ > v − c and f > 2µ

(
1−

√
1− v−c

µ

)
.

Focus on Sl first. If f ≤ u− c, then it is easily seen that pld (f) = u. If µ ≤ u− c, then

pld (f) is well-defined for all f ≥ u− c, because for pd = u− µ we have

(pd − c)
min {u− pd, µ}

µ
+ (u− c− f)

(
1− min {u− pd, µ}

µ

)
= u− c− µ ≥ 0.

In this case

pld (f) = u−
f −

√
f 2 − 4µ (f − (u− c))

2
. (10)

Indeed, µ ≤ u− c implies f 2 ≥ 4µ (f − (u− c)) for all f and pld (f) ≥ u− µ.

If µ > u − c, then pld (f) is well-defined (i.e. has a finite value) iff f 2 ≥ 4µ (f − (u− c))
and f ≤ 2µ, which is equivalent to

0 ≤ f ≤ 2µ

(
1−

√
1− u− c

µ

)
.

Thus, pld (f) is well-defined iff f ≤ u− c or µ ≤ u− c ≤ f or µ > u− c and u− c ≤ f ≤
2µ
(

1−
√

1− u−c
µ

)
. Indeed, u − c < 2µ

(
1−

√
1− u−c

µ

)
when µ > u − c. Otherwise, Sl

cannot make non-negative profits, so pld (f) = −∞. When it is well-defined, pld (f) is given

by (10) above.

The proof for the expression of phd (f) is the same, replacing u by v.

Next, we show that in equilibrium, Sh makes all sales. Indeed, from the expressions of

20It is easily verified that 2µ
(

1−
√

1− u−c
µ

)
> u− c whenever µ > u− c and 2µ

(
1−

√
1− v−c

µ

)
> v− c

whenever µ > v − c.
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pld (f) and phd (f) above, if f ≤ u−c, then both are willing to make all sales via M , so each of

them sets the same price on and off M , meaning Sh makes all sales (M breaks ties in favor

of Sh).

Suppose µ ≤ u− c ≤ f or µ > u− c and u− c ≤ f ≤ 2µ
(

1−
√

1− u−c
µ

)
. Then

u− pld (f) =
f −

√
f 2 − 4µ (f − (u− c))

2
.

Note that in this case we cannot have µ > v − c and f > 2µ
(

1−
√

1− v−c
µ

)
, because

v − c ≥ u− c. Thus v − phd (f) is either equal to zero or to
f−
√
f2−4µ(f−(v−c))

2
. And in both

cases we have v − phd (f) ≤ u − pld (f), so Sh can offer a lower difference in prices and will

make all sales.

Finally, if µ > u − c and f > 2µ
(

1−
√

1− u−c
µ

)
, then u − pld (f) = +∞, so Sl cannot

make non-negative profits by selling via M , and will set plm > u. If v − phd (f) is finite, then

Sh will choose phd to maximize profits ignoring the presence of Sl, which is irrelevant. If in

addition f > v − c, then Sh will set phm > v and

phd = arg max
pd≤v

{
(pd − c) min

{
v − pd
µ

, 1

}}
.

Indeed, this is profit-maximizing for Sh, given that we have assumed M recommends Sh

when plm > u and phm > v. So M makes zero profits in this case. Finally, if v − phd (f) =

u − pld (f) = +∞, then neither seller can make non-negative profits with positive sales via

M , so once again plm > u and phm > v, so M makes zero profits. Thus, if u− pld (f) = +∞,

then we must have f ≤ v − c for M to make positive profits. And in this case Sh will make

all sales once again.

Given f , Sl’s prices are

(
plm, p

l
d

)
=

{ (
u, pld (f)

)
if pld (f) is well-defined

(u+ ε,−∞) if pld (f) = −∞
,

where ε is an arbitrary positive number. In other words, Sl becomes irrelevant when pld (f) =

−∞.

There are therefore two cases:

1. If µ > u − c and f > 2µ
(

1−
√

1− u−c
µ

)
, then pld (f) = −∞, which means Sl has no

chance of making non-negative total profits if it sells anything via M . This implies
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it might as well price at pld = plm > u, which makes it irrelevant.21 In this case, if

f ≤ v− c, then Sh does best by setting phm = v and phd = p∗d (f) = v−min
{
f
2
, µ
}

, so it

gets recommended by M , makes positive profits, and M ’s profit is f
(

1−min
{

f
2µ
, 1
})

as in the baseline model. If f > v − c, then Sh sets phm > v to avoid making sales at a

loss on M (as in the baseline model), so M makes zero profits.

2. If µ ≤ u− c or µ > u− c and 0 ≤ f ≤ 2µ
(

1−
√

1− u−c
µ

)
, then pld (f) exists. In this

case, Sl sets plm = u and pld = pld (f), while Sh sets phm = v and phd to maximize profits

subject to v − phd ≤ u− pld (f) (so that it is recommended by M), i.e.

phd = arg max
pd≥v−

f−
√
f2−4µ(f−(u−c))

2

{
(pd − c)

min {v − pd, µ}
µ

+ (v − c− f)

(
1− min {v − pd, µ}

µ

)}

= v −
f −

√
f 2 − 4µ (f − (u− c))

2
,

where the last equality follows because v − f−
√
f2−4µ(f−(u−c))

2
≥ max

{
v − f

2
, v − µ

}
under the conditions that define this case. Also, we know that at these prices, Sh

must make non-negative profits because if pld (f) is well-defined, then so is phd (f). This

implies M ’s profit in this case is

f

(
1−

f −
√
f 2 − 4µ (f − (u− c))

2µ

)
.

If M sets f ≤ u− c, then pld (f) = u and phd (f) = v. In this case, Sl’s best chance to be

recommended and make non-negative profits is to set pld = plm = u. The best response of Sh

is then to set phd = phm = v, which ensures that it is recommended by M (given M breaks ties

in favor of Sh). This leads all buyers to purchase from Sh on M , so M ’s profits are equal to

f . As a result, M does best in this range to set f = u− c, yielding a profit equal to u− c.
We can therefore restrict attention to f ≥ u− c.
Suppose µ ≤ u− c, so we are in the second case above. The derivative of M ’s profit with

respect to f is

−
(

2µ− f +
√
f 2 − 4µ (f − (u− c))

)(
f −

√
f 2 − 4µ (f − (u− c))

)
2µ
√
f 2 − 4µ (f − (u− c))

,

21Thus, we are implicitly making the assumption (standard in Bertrand competition games) that Sl does
not play a dominated strategy off the equilibrium path (e.g. pld = plm = u, which would yield negative profits
if M were to recommend it).
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which is non-positive because f >
√
f 2 − 4µ (f − (u− c)) and u − c ≥ µ imply 2µ − f +√

f 2 − 4µ (f − (u− c)) ≥ 0. This means M wants to set f as low as possible subject to

f ≥ u− c. Thus, we have proven that when µ ≤ u− c, the optimal solution for M is to set

f ∗ = u− c, resulting in phd = phm = v, no leakage and Π∗ = u− c.
Now suppose µ > u− c.

� If u − c ≤ f ≤ 2µ
(

1−
√

1− u−c
µ

)
, then we are once again in the second case above.

And once again 2µ− f +
√
f 2 − 4µ (f − (u− c)) ≥ 0 because 2µ− f ≥ 0, so M ’s best

option on this range is to set f = u− c, resulting in profit u− c.

� If 2µ
(

1−
√

1− u−c
µ

)
≥ v−c, thenM makes zero profits for all f > 2µ

(
1−

√
1− u−c

µ

)
(see the first case above).

� If 2µ
(

1−
√

1− u−c
µ

)
≤ v − c, then M can set f such that 2µ

(
1−

√
1− u−c

µ

)
<

f ≤ v − c, so that we are in the first case above. Sl is irrelevant, and M ’s profit is

f
(

1−min
{

f
2µ
, 1
})

. Setting f > v − c in this case results in zero profits for M .

Thus, if µ > u−c and 2µ
(

1−
√

1− u−c
µ

)
≥ v−c, then M ’s optimal solution is f ∗ = u−c,

resulting in profit u− c.
Note that 2µ

(
1−

√
1− u−c

µ

)
≥ v − c is equivalent to µ ≥ v−c

2
and µ ≤ (v−c)2

4(v−u)
. This is

possible iff v−c
2
≤ (v−c)2

4(v−u)
, i.e. iff u−c ≥ v−c

2
. So, assuming u−c ≥ v−c

2
, we have that µ > u−c

and 2µ
(

1−
√

1− u−c
µ

)
≥ v − c is equivalent to u− c < µ ≤ (v−c)2

4(v−u)
. Indeed, u− c < (v−c)2

4(v−u)

whenever u < v.

Finally, if µ > u− c and 2µ
(

1−
√

1− u−c
µ

)
≤ v− c, then M chooses between u− c and

max
2µ
(

1−
√

1−u−c
µ

)
<f≤v−c

{
f

(
1−min

{
f

2µ
, 1

})}
= max

2µ
(

1−
√

1−u−c
µ

)
<f≤v−c

{
f

(
1− f

2µ

)}
.

Note that µ > u− c and 2µ
(

1−
√

1− u−c
µ

)
≤ v− c is equivalent to µ > u− c and (µ ≤ v−c

2

or µ ≥ (v−c)2
4(v−u)

). Furthermore,

2µ

(
1−

√
1− u− c

µ

)√
1− u− c

µ
< u− c

for all µ > u− c and

(v − c)
(

1− v − c
2µ

)
≤ u− c⇐⇒ µ ≤ (v − c)2

2 (v − u)
.
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We can therefore distinguish the following possibilities when µ > u−c and 2µ
(

1−
√

1− u−c
µ

)
≤

v − c:

� If u − c < v−c
2

, then (v−c)2
4(v−u)

< v−c
2

so µ > u − c and 2µ
(

1−
√

1− u−c
µ

)
≤ v − c is

equivalent to µ > u− c. In this case, it is easily verified that

max
2µ
(

1−
√

1−u−c
µ

)
<f

f≤v−c

{
f

(
1− f

2µ

)}
=


2µ
(

1−
√

1− u−c
µ

)√
1− u−c

µ
if u− c < µ ≤ 4(u−c)

3

µ
2

if 4(u−c)
3
≤ µ ≤ v − c

(v − c)
(

1− v−c
2µ

)
if µ ≥ v − c

,

so:

– if u − c < µ ≤ 2 (u− c), then M ’s optimal solution is f ∗ = u − c, yielding

Π∗ = u− c

– if 2 (u− c) ≤ µ ≤ v − c, then M ’s optimal solution is f ∗ = µ, yielding Π∗ = µ
2

– if µ ≥ v−c, thenM ’s optimal solution is f ∗ = v−c, yielding Π∗ = (v − c)
(

1− v−c
2µ

)
� If u − c ≥ v−c

2
, then µ > u − c and 2µ

(
1−

√
1− u−c

µ

)
≤ v − c is equivalent to

µ ≥ (v−c)2
4(v−u)

. And u− c ≥ v−c
2

implies

(v − c)2

4 (v − u)
>

4 (u− c)
3

⇔ 4 (u− c)
3

> v − c.

In this case:

– if v−c
2
≤ u− c ≤ 3(v−c)

4
, then

max
2µ
(

1−
√

1−u−c
µ

)
<f≤v−c

{
f

(
1− f

2µ

)}
=


2µ
(

1−
√

1− u−c
µ

)√
1− u−c

µ if u− c < µ ≤ 4(u−c)
3

µ
2 if 4(u−c)

3 ≤ µ ≤ v − c
(v − c)

(
1− v−c

2µ

)
if µ ≥ v − c

,

so:

* if u− c ≤ µ ≤ (v−c)2
2(v−u) , then M ’s optimal solution is f∗ = u− c, yielding Π∗ = u− c

* if µ ≥ (v−c)2
2(v−u) , thenM ’s optimal solution is f∗ = v−c, yielding Π∗ = (v − c)

(
1− v−c

2µ

)
– if 3(v−c)

4 < u− c ≤ v − c, then (v−c)2
4(v−u) > v − c and therefore

max
2µ
(

1−
√

1−u−c
µ

)
<f≤v−c

{
f

(
1− f

2µ

)}
= (v − c)

(
1− v − c

2µ

)
,
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so once again:

* if u− c ≤ µ ≤ (v−c)2
2(v−u) , then M ’s optimal solution is f∗ = u− c, yielding Π∗ = u− c

* if µ ≥ (v−c)2
2(v−u) , thenM ’s optimal solution is f∗ = v−c, yielding Π∗ = (v − c)

(
1− v−c

2µ

)
We have thus proven the expressions of f ∗ and Π∗ given in the text of lemma 3. �

We can now use these expressions to prove Proposition 6.

To determine the effect of u on M ’s profits, suppose first u − c > v−c
2

. Note that (v−c)2
2(v−u)

is increasing in u. If µ ≤ (v−c)2
2(v−u)

, then a slight increase in u increases Π∗. If µ > (v−c)2
2(v−u)

, then

a slight increase in u leaves Π∗ unchanged. Now suppose u − c ≤ v−c
2

. If µ ≤ 2 (u− c),
then a slight increase in u increases Π∗. If µ > 2 (u− c), then a slight increase in u leaves

Π∗ unchanged. Thus, in all cases Π∗ is weakly increasing in u. And it is easily seen that

Π∗ converges to the expression of M ’s profit with a monopoly high-quality seller given by

(5) when u → c. Since M ’s profit with steering is weakly increasing in u, while M ’s profit

without steering is weakly decreasing in u, and both profits converge to M ’s profit with a

monopoly high-quality seller when u → c, we can conclude that M ’s profit with steering is

everywhere weakly higher than the profit without steering.

Finally, it is easily seen from the expressions of M ’s optimal fee and profits (8) and (9)

that in both cases there is no leakage when µ is small and positive leakage when µ is large.
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Online Appendix: Marketplace leakage

Andrei Hagiu1 and Julian Wright2

A Two-part tariff

Suppose M can also extract a share β ∈ [0, 1] of S’s net profits through a fixed (upfront)

fee. Since all buyers have the same unit valuation, there is no efficiency loss in this setting

of using a fixed fee, which can be used to transfer profits between the two parties, while

f is used by M to optimally control for leakage. Thus, β can be thought of as measuring

the marketplace’s ability to extract a fixed amount from the seller upfront, which could be

limited by various factors, e.g. a liquidity constraint. We find that provided β < 1, our

insights go through: there is equilibrium leakage and M ’s profits are increasing in µ.

Since the fixed fee is paid upfront, it doesn’t change S’s pricing, which is given by

p∗d (f) =

{
v − µ if f ≥ 2µ

v − f
2

if f ≤ 2µ

as before. S’s corresponding profit from participating (before fixed fee) is

π (f) = (pd (f)− c)
(
v − pd (f)

µ

)
+ (v − c− f)

(
1− v − pd (f)

µ

)
The corresponding profit for M is

Π (f) =

{
βπ (f) if f ≥ 2µ

f
(

1− f
2µ

)
+ βπ (f) if f ≤ 2µ

.

Since f ≤ v − c, we have π (f) > 0, so S always participates, since its net profit from an

ex-ante perspective is (1− β)π (f).

Thus,

Π (f) =

{
β (v − µ− c) if f ≥ 2µ

f
(

1− f
2µ

)
+ β

(
f2

4µ
+ (v − c− f)

)
if f ≤ 2µ

.

1Boston University Questrom School of Business. E-mail: ahagiu@bu.edu
2Department of Economics, National University of Singapore, E-mail: jwright@nus.edu.sg
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And we therefore have

f ∗ = min

{
2µ (1− β)

2− β
, v − c

}
Π∗ = f ∗

(
1− f ∗

2µ

)
+ β

(
f ∗2

4µ
+ (v − c− f ∗)

)
=

{
µ(1−β)2

(2−β)
+ β (v − c) if 2µ(1−β)

2−β ≤ v − c
(v − c)− (v−c)2

2µ

(
1− β

2

)
if 2µ(1−β)

2−β ≥ v − c
.

Of course, when β = 0, we obtain the f ∗ and Π∗ from our baseline case in the main text.

Meanwhile, when β → 1, we obtain

f ∗ = 0

Π∗ = v − c.

This means that if M can extract S’s entire profit via a fixed fee, then there is no reason

to charge a transaction fee (since it induces leakage), and M obtains the maximum profit

v− c (all transactions are conducted on M). However, provided β < 1, there will be positive

leakage in equilibrium. Furthermore, it is easily seen that Π∗ is increasing in µ for all β < 1.

B Ad-valorem fee

Let 0 < ρ < 1 be the ad-valorem (proportional) fee charged by M , so that S retains

(1− ρ) pm and pays ρpm to M . Given prices, the buyers’ choices are the same. First, note

that M will never set ρ so that (1− ρ) v < c, i.e. ρ > 1− c
v
. If it did, S would make a loss

when selling through M at the highest possible price of v, and as a result would simply set

some price pm > v, so that it makes no sales on M . This in turn implies M would make

zero profits in this case. Second, given that ρ ≤ 1 − c
v
, S will set pm = v. The logic is the

same as before. And third, S sets pd ≤ v, again for the same reason as before.

Given these observations, S’s pricing problem reduces to setting pd ≤ v to maximize its

profit

π = (pd − c)G (v − pd) + ((1− ρ) v − c) (1−G (v − pd)) .

S’s optimal pd is such that v − s ≤ pd ≤ v.

Denote by pd (f) the unique solution in pd to the first-order condition (FOC)

G (v − pd)− g (v − pd) (pd − (1− ρ) v) = 0,
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so that

pd (ρ) = (1− ρ) v +
G (v − pd (ρ))

g (v − pd (ρ))
.

S’s profit maximizing price p∗d (ρ) is then given by

p∗d (ρ) =


v − s if pd (ρ) ≤ v − s
pd (ρ) if v − s ≤ pd (ρ) ≤ v

v if pd (ρ) ≥ v

.

The corresponding profit for M is

Π∗ = max
ρ≤1− c

v

{ρv (1−G (v − p∗d (ρ)))} .

Assuming G (s) = s
µ

on s ∈ [0, µ], and assuming ρ ≤ 1− c
v
, we have

pd (ρ) = v
(

1− ρ

2

)
and therefore S’s profit maximizing price p∗d (f) is given by

vρ = 2µ

p∗d (f) =

{
v − µ if ρ ≥ 2µ

v

v
(
1− ρ

2

)
if ρ ≤ 2µ

v

.

The corresponding profit for M is

Π (ρ) =

{
0 if f ≥ 2µ

v

ρv
(

1− vρ
2µ

)
if f ≤ 2µ

v

.

Recalling that M will always set ρ ≤ 1− c
v

and following the same steps as the proof of

Proposition 1, the optimal ad-valorem fee is ρ∗ (µ) = min
{
µ
v
, 1− c

v

}
. Substituting this back

into the above pricing and profit formula, we obtain the identical equilibrium pricing p∗d (µ)

and profit functions Π∗ (µ) as in Proposition 1, proving the results are identical.

C Power function distribution

We repeat our baseline analysis when G (s) = 1
µ
sα for s ∈

[
0, µ

1
α

]
to allow for any

α > 0. Note an increase in the parameter µ still corresponds to an increase in switching

costs. By increasing µ, we will increase the expected switching cost which is α
1+α

µ
1
α , with
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G2 (s) stochastically dominating G1 (s) if µ2 > µ1 > 0. We obtain the following proposition

which generalizes Proposition 1 in the main text to allow for α 6= 1.

Proposition 7. The optimal transaction fee, direct price and marketplace profits are as

follows:

f ∗ (µ) = min

{
(1 + α)1− 1

α

α
µ

1
α , v − c

}

p∗d (µ) = v −min

{(
µ

1 + α

) 1
α

,
α

1 + α
(v − c)

}

Π∗ (µ) =


(

µ
1+α

) 1
α if µ ≤ αα(v−c)α

(1+α)α−1

(v − c)
(

1− αα(v−c)α
µ(1+α)α

)
if µ > αα(v−c)α

(1+α)α−1

L∗ = min

{
1

1 + α
,

αα

(1 + α)α
(v − c)α

}
The extent of leakage is 1

µ
(v − p∗d (µ))α. In response to an increase in switching costs (an

increase in µ), the marketplace’s fee weakly increases, S’s direct price weakly decreases, the

extent of leakage weakly decreases, and the marketplace’s profit increases. There is always

positive but partial leakage.

Proof. Assuming f ≤ v − c, we have

pd (f) = v − α

1 + α
f

and therefore S’s profit maximizing price p∗d (f) is given by

p∗d (f) =

{
v − µ 1

α if f ≥ 1+α
α
µ

1
α

v − α
1+α

f if f ≤ 1+α
α
µ

1
α

.

The corresponding profit for M is

Π (f) =

{
0 if f ≥ 1+α

α
µ

1
α

f
(

1− αα

µ(1+α)α
fα
)

if f ≤ 1+α
α
µ

1
α

.

Noting second-order conditions hold for any f > 0, α > 0 and µ > 0, we have

arg max
f

{
f

(
1− αα

µ (1 + α)α
fα
)}

=
1 + α

α

1

(1 + α)
1
α

µ
1
α <

1 + α

α
µ

1
α .
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Taking into account that f ≤ v − c, this implies the level of f ∗ and Π∗ given in Proposition

7.

First, note that Π∗ is always increasing in µ. To determine the direct price, note that if
(1+α)1−

1
α

α
µ

1
α ≤ v − c, then

f ∗ =
(1 + α)1− 1

α

α
µ

1
α ≤ 1 + α

α
µ

1
α ,

so in this case

p∗d = v −
(

µ

1 + α

) 1
α

.

If (1+α)1−
1
α

α
µ

1
α ≥ v − c, then

f ∗ = v − c ≤ (1 + α)1− 1
α

α
µ

1
α ≤ 1 + α

α
µ

1
α ,

so in this case

p∗d = v − α

1 + α
(v − c) .

Combining these two results implies p∗d in Proposition 7. Since
(

µ
1+α

) 1
α is everywhere increas-

ing in µ, p∗d is strictly decreasing in µ below a threshold level of µ, but above that threshold,

p∗d is constant in µ.

The equilibrium extent of leakage is given by

αα

µ (1 + α)α
(f ∗)α .

Given f ∗ = min

{
(1+α)1−

1
α

α
µ

1
α , v − c

}
, the extent of leakage is

min

{
1

1 + α
,
αα (v − c)α

µ (1 + α)α

}
.

This is weakly decreasing in µ; initially constant, and then decreasing in µ.

Assume µ = 1 and let’s see how f ∗ and the extent of leakage change with α. We have

f ∗ = min

{
(1 + α)1− 1

α

α
, v − c

}
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L∗ = min

{
1

1 + α
,

αα

(1 + α)α
(v − c)α

}

D Specific results with referral fees

We start by considering specific distributions for the case where we compare using trans-

action fee alone and using a referral fee alone, and then we consider the case M uses both.

D.1 The tradeoff under specific distributions

To make the tradeoff between the two types of fees more precise, we adopt the same

uniform distribution as in the baseline model for G (.), and assume that H follows the

generalized Pareto distribution

H (q) = 1−

(
1 +

ε
(
q − q

)
σ

)− 1
ε

,

where ε < 0, and the support is 0 ≤ q ≤ q ≤ q − σ
ε
≤ 1. Here, ε measures the shape

of the distribution and σ measures the scale (or dispersion) of the distribution. With this

distribution function, we show the following proposition.

Proposition 8. Suppose G (s) = s
µ

and s = µ. If σ ≥ q, then M prefers a transaction fee

over a referral fee iff

Π∗ (µ)

v − c
>
σ

1
ε

(
σ−εq
1−ε

)1− 1
ε

q + σ
1−ε

, (11)

where Π∗ (µ) is given by (6). If σ < q, then M prefers a transaction fee over a referral fee

iff
Π∗ (µ)

v − c
>

q

q + σ
1−ε

. (12)

If switching costs as measured by µ are sufficiently high (low), M will prefer to use a trans-

action fee (referral fee). If the dispersion in buyer demand as measured by σ is sufficiently

low and provided q > 0, then M will prefer to use a referral fee. Moreover, an increase in

µ, or σ, or ε always shifts M ’s tradeoff towards using a transaction fee, while an increase in

q always shifts M ’s tradeoff towards using a referral fee.

Proof of Proposition 8
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A standard result for the generalized Pareto distribution is that the expected value is∫ q

q

qdH (q) = q +
σ

1− ε
. (13)

Taking the first-order condition of maxy {y (1−H (y))}, we have

y∗ = max

{
σ − εq
1− ε

, q

}
,

which implies

max
y
{y (1−H (y))} =

 σ
1
ε

(
σ−εq
1−ε

)1− 1
ε

if σ ≥ q

q if σ ≤ q
. (14)

Substituting (13) and (14) into the expression for the tradeoff in (7), we obtain (11)-(12).

From the expression for Π∗ in Proposition 7, we know as µ → ∞, Π∗ → v − c. Given∫ q
q
qdH (q) > maxy {y (1−H (y))}, M will do strictly better with a transaction fee. Simi-

larly, as µ→ 0, Π∗ → 0, so M will do strictly better with a referral fee.

Taking σ → 0 when q > 0, (12) becomes

Π∗

v − c
> 1,

which can never hold, so in this case M must do better with a referral fee.

Next consider the comparative static results on (11) and (12).

The result on µ in Proposition 8 follows directly from Proposition 1. If q ≥ σ, then the

right-hand side of (12) is clearly increasing in q, and decreasing in σ and ε. If q ≤ σ, then

the derivative of the right-hand side of (11) with respect to q is equal to

σ
1
ε (1− ε) q(

σ−qε
1−ε

) 1
ε (
q (1− ε) + σ

)2
> 0,

and with respect to σ is equal

−
(1− ε) q2

σ1− 1
ε

(
σ−qε
1−ε

) 1
ε (

(1− ε) q + σ
)2
< 0.

Finally, consider ε when 0 ≤ q < σ. We let q = λσ where 0 ≤ λ < 1, and rewrite the

7



right-hand side of (11) as

(1− λε)1− 1
ε (1− ε)

1
ε

1 + λ (1− ε)
=

(
1− λε

1 + λ (1− ε)

)(
1− ε

1− λε

) 1
ε

. (15)

Note the derivative of the term 1−λε
1+λ(1−ε) is

− λ2

(1 + λ (1− ε))2 < 0.

Taking the log of the second term in ε, we get

1

ε
ln (1− ε)− 1

ε
ln (1− λε) .

The derivative of this with respect to ε is

− 1

ε2
ln (1− ε)− 1

ε (1− ε)
+

1

ε2
ln (1− λε) +

λ

ε (1− λε)
,

which is clearly increasing in λ and equals zero when λ = 1, meaning it is negative for all

0 ≤ λ < 1. Thus, since both terms in (15) are positive but decreasing in ε, the right-hand

side of (11) is decreasing in ε (given ε < 0) and σ > q.

�

To understand the effect of µ (switching costs) on the choice of fee type, note that with

a referral fee, M does not have to worry about switching costs, which are irrelevant for its

profit. With a transaction fee, higher switching costs increase M ’s profit (indeed, recall

Π∗ (µ) is increasing in µ), and so using a transaction fee naturally becomes more attractive

with high switching costs.

To understand the effects of σ, q and ε on the choice of fee type, it is useful to first

point out that they each have a monotonic effect on the normalized variation of q, i.e. the

standard deviation of q divided by its mean. The normalized variation matters because more

uncertainty over buyer demand relative to the expected level intuitively shifts the tradeoff in

favor of using a transaction fee given it allows M to capture the expected value of q without

any discount for uncertainty. To confirm this intuition, the normalized standard deviation

of the generalized Pareto distribution H (given ε < 0) equals

σ(
σ + q (1− ε)

)√
1− 2ε

.
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Clearly, this expression is increasing in σ and ε, and decreasing in q. Thus, when σ or ε

increase, or q decreases, the normalized variation increases, shifting the tradeoff in favor of

using a transaction fee.

The above intuition is based on what happens when σ ≥ q. In case σ < q, the logic is

a bit different. With relatively low dispersion in the distribution, M prefers to set a low fee

(r∗ = q) so that S always joins, i.e. for any realized q. There is no longer any distortion

under the referral fee, but M ’s profit is fixed at (v − c) q. This can be compared to M ’s profit

under a transaction fee, which depends on the expected value of q, i.e. Π∗ (µ)
(
q + σ

1−ε

)
. In

this case, an increase in σ and ε shift the tradeoff in favor of using a transaction fee simply

because they increase the expected value of q but leave the amount M can extract under a

referral fee unchanged. On the other hand, an increase in q increases M ’s profit by the full

amount v−c with a referral fee, but by less than this amount with a transaction fee, thereby

shifting the tradeoff in favor of a referral fee.

D.2 Charging both referral fee and transaction fee

Suppose M charges both a referral fee r and a transaction fee f . Then we can use the

logic in the baseline model to conclude 0 < f ≤ v − c and pd < pm = v. And the seller’s

profit is

max
pd≤v
{q ((pd − c)G (v − pd) + (v − c− f) (1−G (v − pd)))− r}

= qmax
pd≤v
{(pd − c)G (v − pd) + (v − c− f) (1−G (v − pd))} − r

= qπ (f)− r

So the seller sets p∗d (f) as in the baseline model and participates on the marketplace iff

qπ (f)− r ≥ 0.

Using G (s) = s
µ

over [0, µ], recall we have

p∗d (f) =

{
v − µ if f ≥ 2µ

v − f
2

if f ≤ 2µ
.

Thus

π (f) =

{
v − µ− c if f ≥ 2µ

v − c− f
(

1− f
4µ

)
if f ≤ 2µ

.
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The marketplace’s profit is then

Π (r, f) =

∫
q≥ r

π(f)

(r + qf (1−G (v − p∗d (f)))) dH (q) .

Note we can confirm if r = 0, then

Π (r, f) = Π∗
∫ q

q

qdH (q) ,

which coincides with one special case, and if f = 0, then

Π (r, f) = max
r

{
r

(
1−H

(
r

π (0)

))}
,

where π (0) = v − c, which coincides with the other special case.

Thus, we have

Π (r, f) =


∫ q+σ

max{ r
v−c−µ ,q}

rdH (q) if f ≥ 2µ∫ q+σ
max

{
r

v−c−f(1− f
4µ)

,q

} (r + qf
(

1− f
2µ

))
dH (q) if f ≤ 2µ .

Note that setting f ≥ 2µ is a weakly dominated strategy. Indeed, if f ≥ 2µ, then

Π (r, f) =

∫ q+σ

max{ r
v−c−µ ,q}

rdH (q) ≤
∫ q+σ

max{ r
v−c ,q}

rdH (q) = Π (r, 0) ,

with strict inequality whenever r
v−c−µ > q.

Thus, we can restrict attention to f < 2µ, so

Π (r, f) =

∫ q+σ

max

{
r

v−c−f(1− f
4µ)

,q

}(r + qf

(
1− f

2µ

))
dH (q) .

And since r + qf
(

1− f
2µ

)
is increasing in r, we can restrict attention to r such that

r

v−c−f(1− f
4µ)
≥ q, so

Π (r, f) =

∫ q+σ

r

v−c−f(1− f
4µ)

(
r + qf

(
1− f

2µ

))
dH (q) .

Suppose first q can only take two values: q0 − σ with probability 1
2

and q0 + σ with

10



probability 1
2
. Then the optimal choice for M is one of two options:

� Set r = (q0 − σ)
(
v − c− f

(
1− f

4µ

))
so that the seller always participates. In this

case, M ’s profit as a function of f is

Π1 (f) = r + q0f

(
1− f

2µ

)
= (q0 − σ)

(
v − c− f

(
1− f

4µ

))
+ q0f

(
1− f

2µ

)
= q0

(
v − c− f 2

4µ

)
− σ

(
v − c− f

(
1− f

4µ

))
.

In this case, it is optimal to set

f1 =
2µσ

q0 + σ
< µ

Note that f1 is increasing in σ and decreasing in q0. We then have

r1 = (q0 − σ)

(
v − c− f1

(
1− f1

4µ

))
Π1 = (q0 − σ) (v − c) +

µσ2

q0 + σ
.

� Set r = (q0 + σ)
(
v − c− f

(
1− f

4µ

))
so that the seller participates only when q =

q0 + σ. In this case, M ’s profit as a function of f is

Π2 (f) =
1

2
r +

1

2
(q0 + σ) f

(
1− f

2µ

)
=

1

2
(q0 + σ)

(
v − c− f 2

4µ

)
.

In this case, it is optimal to set

f2 = 0,

so

r2 = (q0 + σ) (v − c)

Π2 =
1

2
(q0 + σ) (v − c) .
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M will choose the better of these two options, so

Π∗ = max {Π1,Π2}

= max

{
(q0 − σ) (v − c) +

µσ2

q0 + σ
,
1

2
(q0 + σ) (v − c)

}
.

Π1 ≥ Π2 ⇐⇒
2µ

v − c
≥
(

1 +
q0

σ

)(
3− q0

σ

)
.

Recalling that µ < v − c by assumption so 4− 2µ
v−c > 2, we can conclude

Π1 ≥ Π2 ⇐⇒
q0

σ
≥ 1 +

√
4− 2µ

v − c
Π1 ≥ Π2 ⇐⇒ σ ≤ q0

1 +
√

4− 2µ
v−c

.

Thus, we have

f ∗ =


2µσ
q0+σ

if σ ≤ q0

1+
√

4− 2µ
v−c

0 if σ > q0

1+
√

4− 2µ
v−c

This means f ∗ is increasing in the σ for σ ∈
[
0, q0

1+
√

4− 2µ
v−c

]
, and then it drops to zero when

σ > q0

1+
√

4− 2µ
v−c

. In other words, for σ ∈
[
0, q0

1+
√

4− 2µ
v−c

]
, the variance (uncertainty) of q has the

expected effect on the optimal transaction fee—more uncertainty makes a higher transaction

fee. Meanwhile, the optimal referral fee in this region is

r∗ = (q0 − σ)

(
v − c− f ∗

(
1− f ∗

4µ

))
,

so is decreasing in σ, because f ∗
(

1− f∗

4µ

)
is increasing in f ∗, which is itself increasing in σ.

Once σ increases beyond the threshold q0

1+
√

4− 2µ
v−c

, the optimal transaction fee drops down

to zero and the optimal referral fee jumps up to r∗ = (q0 + σ) (v − c), which is now increasing

in σ.

E Alternative tie-breaking assumption

Here we redo the analysis of steering under the assumption that if neither seller is offering

non-negative surplus to buyers that purchase via M (i.e. plm > u and phm > v), then M does

not show either seller.
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We first prove the following lemma.

Lemma 4 If u− c ≤ 2(v−c)
3

, then

f ∗ =


u− c if µ ≤ 2 (u− c)
µ if 2 (u− c) ≤ µ ≤ 4(v−c)

3

2µ
(

1−
√

1− v−c
µ

)
if µ ≥ 4(v−c)

3

Π∗ =


u− c if µ ≤ 2 (u− c)
µ
2

if 2 (u− c) ≤ µ ≤ 4(v−c)
3

2µ
√

1− v−c
µ

(
1−

√
1− v−c

µ

)
if µ ≥ 4(v−c)

3

If 2(v−c)
3
≤ u− c ≤ v − c, then

f ∗ =

 u− c if µ ≤ (2(v−c)−(u−c))2
4(v−u)

2µ
(

1−
√

1− v−c
µ

)
if µ ≥ (2(v−c)−(u−c))2

4(v−u)

Π∗ =

 u− c if µ ≤ (2(v−c)−(u−c))2
4(v−u)

2µ
√

1− v−c
µ

(
1−

√
1− v−c

µ

)
if µ ≥ (2(v−c)−(u−c))2

4(v−u)

Proof of Lemma 4

Here too, given f and seller prices, M recommends the seller that induces the least

amount of leakage (i.e. with the lowest non-negative difference between price on M and

direct price), subject to offering non-negative utility to buyers that buy via M . We define

pld (f) and phd (f) as in the proof of Lemma 3:

pld (f) = max
pd≤u

(pd−c)
min{u−pd,µ}

µ
+(u−c−f)

(
1−min{u−pd,µ}

µ

)
≥0

{pd}

phd (f) = max
pd≤v

(pd−c)
min{v−pd,µ}

µ
+(v−c−f)

(
1−min{v−pd,µ}

µ

)
≥0

{pd} .
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First, because pld (f) and phd (f) are defined in the same way, we still have

pld (f) =



u if f ≤ u− c

u− f−
√
f2−4µ(f−(u−c))

2
if

µ ≤ u− c ≤ f or

µ > u− c and u− c ≤ f ≤ 2µ
(

1−
√

1− u−c
µ

)
−∞ if µ > u− c and f > 2µ

(
1−

√
1− u−c

µ

)

phd (f) =



v if f ≤ v − c

v − f−
√
f2−4µ(f−(v−c))

2
if

µ ≤ v − c ≤ f or

µ > v − c and v − c ≤ f ≤ 2µ
(

1−
√

1− v−c
µ

)
−∞ if µ > v − c and f > 2µ

(
1−

√
1− v−c

µ

)
Second, Sh still makes all sales in equilibrium by the same reasoning as in the proof of

Lemma 3. The only slight difference is when v − phd (f) = u − pld (f) = +∞, i.e. neither

seller can make non-negative profits with positive sales via M . In this case the two sellers

set plm > u and phm > v, which means M doesn’t show either of them and makes zero profits.

This means M would never set such an f in equilibrium in the first place.

There are therefore two cases:

Case 1) If µ > u−c and f > 2µ
(

1−
√

1− u−c
µ

)
, then pld (f) = −∞, which means Sl has

no chance of making non-negative profits. This implies it might as well price at pld = plm > u,

which makes it irrelevant. In this case, if phd (f) is well-defined (i.e. not equal to −∞), then

Sh does best by setting phm = v and phd = p∗d (f) = v −min
{
f
2
, µ
}

, so it gets recommended

by M , makes positive profits, and M ’s profit is f
(

1−min
{

f
2µ
, 1
})

. If phd (f) = −∞, then

Sh cannot make non-negative profits selling through M , so it sets phm > v and M makes zero

profits.

Case 2) If µ ≤ u− c or µ > u− c and 0 ≤ f ≤ 2µ
(

1−
√

1− u−c
µ

)
, then pld (f) exists. In

this case, Sl sets plm = u and pld = pld (f), while Sh sets phm = v and phd to maximize profits

subject to v − phd ≤ u− pld (f) (so that it is recommended by M), i.e.

phd = arg max
pd≥v−

f−
√
f2−4µ(f−(u−c))

2

{
(pd − c)

min {v − pd, µ}
µ

+ (v − c− f)

(
1− min {v − pd, µ}

µ

)}

= v −
f −

√
f 2 − 4µ (f − (u− c))

2
,

where the last equality follows because v − f−
√
f2−4µ(f−(u−c))

2
≥ max

{
v − f

2
, v − µ

}
under

the conditions that define case 2). Also, we know that at these prices, Sh must make non-
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negative profits because if pld (f) is well-defined, then so is phd (f).

This implies M ’s profit in this case is

f

(
1−

f −
√
f 2 − 4µ (f − (u− c))

2µ

)
.

If M sets f ≤ u − c, then pld (f) = u and phd (f) = v. In this case, Sl’s best chance to

be recommended and make non-negative profits is to set pld = plm = u. The best response of

Sh is then to set phd = phm = v, which ensures that it is recommended by M (we assume M

breaks ties in favor of Sh). This leads all buyers to purchase from Sh on M , so M ’s profits

are equal to f . As a result, M does best in this range to set f = u − c, yielding a profit

equal to u− c.
We can therefore restrict attention to f ≥ u− c.
Suppose µ ≤ u− c, so we are in case 2) above. The derivative of M ’s profit with respect

to f is

d

(
f

(
1− f−

√
f2−4µ(f−(u−c))

2µ

))
df

=
−
(

2µ− f +
√
f2 − 4µ (f − (u− c))

)(
f −

√
f2 − 4µ (f − (u− c))

)
2µ
√
f2 − 4µ (f − (u− c))

≤ 0,

where the last inequality follows because f >
√
f 2 − 4µ (f − (u− c)) and u− c ≥ µ imply

2µ − f +
√
f 2 − 4µ (f − (u− c)) ≥ 0. This means M wants to set f as low as possible

subject to f ≥ u − c. Thus, we have proven that when µ ≤ u − c, the optimal solution for

M is to set f ∗ = u− c, resulting in phd = phm = v, no leakage and Π∗ = u− c.
Now suppose µ > u− c.

� If u− c ≤ f ≤ 2µ
(

1−
√

1− u−c
µ

)
, then we are once again in case 2) above. And once

again 2µ− f +
√
f 2 − 4µ (f − (u− c)) ≥ 0 because 2µ− f ≥ 0, so M ’s best option on

this range is to set f = u− c, resulting in profit u− c.

� If µ ≤ v − c, then M can set f such that 2µ
(

1−
√

1− u−c
µ

)
< f ≤ 2µ to obtain

profits f
(

1− f
2µ

)
(case 1) above)

� If µ > v−c, then M can set f such that 2µ
(

1−
√

1− u−c
µ

)
< f ≤ 2µ

(
1−

√
1− v−c

µ

)
to obtain profits f

(
1− f

2µ

)
(case 1) above)
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Thus, if u− c < µ ≤ v − c, then M chooses between u− c and

max
2µ
(

1−
√

1−u−c
µ

)
<f≤2µ

{
f

(
1− f

2µ

)}
=

 2µ
√

1− u−c
µ

(
1−

√
1− u−c

µ

)
if µ ≤ 4(u−c)

3

µ
2

if µ ≥ 4(u−c)
3

And if µ > v − c, then M chooses between u− c and

max
2µ
(

1−
√

1−u−c
µ

)
<f

f≤2µ
(

1−
√

1− v−c
µ

)
{
f

(
1− f

2µ

)}
=


2µ
√

1− u−c
µ

(
1−

√
1− u−c

µ

)
if µ ≤ 4(u−c)

3

µ
2

if 4(u−c)
3
≤ µ ≤ 4(v−c)

3

2µ
√

1− v−c
µ

(
1−

√
1− v−c

µ

)
if µ ≥ 4(v−c)

3

Suppose u− c ≤ v−c
2

. Then:

� if u− c < µ ≤ 2 (u− c), the optimal solution is f ∗ = u− c, yielding Π∗ = u− c.

� if 2 (u− c) ≤ µ ≤ 4(v−c)
3

, the optimal solution is f ∗ = µ, yielding Π∗ = µ
2
.

� if µ ≥ 4(v−c)
3

, the optimal solution is f ∗ = 2µ
(

1−
√

1− v−c
µ

)
, yielding

Π∗ = 2µ

√
1− v − c

µ

(
1−

√
1− v − c

µ

)
.

Suppose v−c
2
≤ u− c ≤ 2(v−c)

3
< 3(v−c)

4
. Then:

� if u− c < µ ≤ v − c, the optimal solution is f ∗ = u− c, yielding Π∗ = u− c.

� if v − c < µ ≤ 2 (u− c), the optimal solution is f ∗ = u− c, yielding Π∗ = u− c.

� if 2 (u− c) < µ ≤ 4(v−c)
3

, the optimal solution is f ∗ = µ, yielding Π∗ = µ
2
.

� if µ ≥ 4(v−c)
3

, the optimal solution is f ∗ = 2µ
(

1−
√

1− v−c
µ

)
, yielding

Π∗ = 2µ

√
1− v − c

µ

(
1−

√
1− v − c

µ

)
.

Suppose 2(v−c)
3

< u− c ≤ 3(v−c)
4

. Then 2 (u− c) > 4(v−c)
3

and:

� if u− c < µ ≤ v − c, the optimal solution is f ∗ = u− c, yielding Π∗ = u− c.

� if v − c < µ ≤ 4(v−c)
3

, the optimal solution is f ∗ = u− c, yielding Π∗ = u− c.
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� if µ ≥ 4(v−c)
3

then M chooses between u − c and 2µ
√

1− v−c
µ

(
1−

√
1− v−c

µ

)
. We

have

2µ

√
1− v − c

µ

(
1−

√
1− v − c

µ

)
≥ u− c√

1− v − c
µ

(
1−

√
1− v − c

µ

)
≥ u− c

2µ

Clearly, if µ ≤ 2 (u− c), then last inequality above cannot hold because the LHS is

less than or equal to 1
4
. So if 4(v−c)

3
≤ µ ≤ 2 (u− c), the optimal solution continues to

be f ∗ = u− c, yielding Π∗ = u− c. So suppose µ > 2 (u− c). Let x =
√

1− v−c
µ

and

y = u−c
2µ

< 1
4
. Then the last inequality above is equivalent to

x2 − x+ y ≤ 0

1−
√

1− 4y

2
≤ x ≤ 1 +

√
1− 4y

2

1−
√

1− 2(u−c)
µ

2
≤

√
1− v − c

µ
≤

1 +
√

1− 2(u−c)
µ

2

The LHS inequality always holds when µ > 2 (u− c) > 4(v−c)
3

. Indeed,

1−
√

1− 2(u−c)
µ

2
≤
√

1− v − c
µ

is equivalent to

1− 2
v − c
µ

+
(u− c)
µ

+

√
1− 2 (u− c)

µ
≥ 0,

which holds because

1− 2
v − c
µ

+
(u− c)
µ

≥ 1− 2
v − c
µ

+
2 (v − c)

3µ
= 1− 4 (v − c)

3µ
> 0.

Thus, when µ > 2 (u− c) the inequality√
1− v − c

µ

(
1−

√
1− v − c

µ

)
≥ u− c

2µ

is equivalent to √
1− v − c

µ
≤

1 +
√

1− 2(u−c)
µ

2
,
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i.e.

µ ≥ (2 (v − c)− (u− c))2

4 (v − u)

And it can be verified that

(2 (v − c)− (u− c))2

4 (v − u)
> 2 (u− c) .

Bottomline for this case is that solution is f ∗ = u − c and Π∗ = u − c for µ ≤
(2(v−c)−(u−c))2

4(v−u)
, and f ∗ = 2µ

(
1−

√
1− v−c

µ

)
and Π∗ = 2µ

√
1− v−c

µ

(
1−

√
1− v−c

µ

)
for µ ≥ (2(v−c)−(u−c))2

4(v−u)
.

Suppose 3(v−c)
4

< u− c ≤ v − c. Then:

� if u− c < µ ≤ 4(v−c)
3

, the optimal solution is f ∗ = u− c, yielding Π∗ = u− c

� if 4(v−c)
3
≤ µ ≤ (2(v−c)−(u−c))2

4(v−u)
, the optimal solution is f ∗ = u− c, yielding Π∗ = u− c

� if µ ≥ (2(v−c)−(u−c))2
4(v−u)

then M chooses f ∗ = 2µ
(

1−
√

1− v−c
µ

)
and

Π∗ = 2µ

√
1− v − c

µ

(
1−

√
1− v − c

µ

)
.

We have thus proven the expressions of f ∗ and Π∗ given above.

�

Using the expressions from the text of Lemma 4, we now verify that the same results

stated in Proposition 6 from the main text continue to hold here.

First, the proof of Lemma 4 has already shown that Sh makes all sales.

Second, it is easily seen that Π∗ is weakly increasing in u.

Third, it is easily seen that when u→ c, we have

Π∗s =


µ
2

if µ ≤ 4(v−c)
3

2µ
√

1− v−c
µ

(
1−

√
1− v−c

µ

)
if µ ≥ 4(v−c)

3

.

This is the profit with a single seller of value v (the low-quality seller with value u is irrelevant

when u → c), assuming M can steer and hides the seller when it sets pm > v. Note the

difference with the baseline model in the paper, where we have assumed no steering or, if
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steering is possible, that M shows the seller when pm > v (in that case, M is indifferent

between showing and not showing the seller). The monopoly profit in the baseline was

Π∗ns =

{
µ
2

if µ ≤ v − c
(v − c)

(
1− v−c

2µ

)
if µ ≥ v − c

.

Comparing the two profit expressions, we have Π∗s ≥ Π∗ns for all µ. To see this, note that

(v − c)
(

1− v−c
2µ

)
≤ µ

2
for all µ and

2µ

√
1− v − c

µ

(
1−

√
1− v − c

µ

)
> (v − c)

(
1− v − c

2µ

)
is equivalent to √

1− v − c
µ

(
1−

√
1− v − c

µ

)
>

(
1− v − c

2µ

)
v − c
2µ

.

The last inequality is true when µ ≥ 4(v−c)
3

because in that case

1− v − c
2µ

>

√
1− v − c

µ
≥ 1

2
.

Thus, since the profit expression in Lemma 4 is increasing in u and equal to Π∗s when

u→ c, while the profit with two sellers and no steering from Lemma 2 is decreasing in u and

equal to Π∗ns when u→ c, we can conclude that here too, M ’s profit with steering is always

higher than M ’s profit without steering.

F Competing sellers with low-quality seller only active

on the marketplace

Here we assume the low-quality seller (whose product offers utility u) does not have a

direct channel so is only active on M . The high-quality seller is still active in both channels.

For the case without steering, we prove the following result.

Lemma 5 If the low-quality seller is only active on M and M does not (or cannot)

steer, then M obtains the exact same profits as in the baseline, i.e. in the absence of the

low-quality seller.

Proof of Lemma 5
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Using the same reasoning as in the proof of Proposition 5 in the main text, the high-

quality seller (Sh) must make all the sales on and off M in equilibrium. Given this,

the low-quality seller (Sl)’s price on M is plm = c + f (this is the only price it sets).

Again, by similar arguments as in the proof of Proposition 5, f ≤ v − c and phd ≤ phm.

And we must also have phm ≤ min {c+ f + v − u, v} or phd ≤ v, which implies either

phm = min {c+ f + v − u, v} or phd = v. It is then easily verified that here too we must

always have phm = min {c+ f + v − u, v}.
There are then two cases:

a) If f ≤ u− c, then phm = c+ f + v − u and Sh solves

max
phd≤c+f+v−u

{(
phd − c

) min
{
c+ f + v − u− phd , µ

}
µ

+ (v − u)

(
µ−min

{
c+ f + v − u− phd , µ

}
µ

)}
,

where the phd ≤ c+f+v−u constraint comes from phd ≤ phm. It is easily verified that the solu-

tion is ph∗d = c+ f
2
+v−u+max

{
0, f

2
− µ

}
, so M ’s profits in this case are f

(
1−min

{
f
2µ
, 1
})

.

b) If f > u− c, then phm = v and Sh solves

max
phd≤v

{(
phd − c

) min
{
v − phd , µ

}
µ

+ (v − c− f)

(
µ−min

{
v − phd , µ

}
µ

)}

It is easily verified the solution is ph∗d = v −min
{
f
2
, µ
}

, so M ’s profits in this case are once

again f
(

1−min
{

f
2µ
, 1
})

.

Thus, in all cases M makes f
(

1−min
{

f
2µ
, 1
})

, which is the exact same profit (as a

function of f) as in the baseline, i.e. when the low-quality seller was absent. Optimizing

over f leads to the same solution for M .

�

Thus, the presence of a low-quality seller without a direct channel has no impact on

leakage and marketplace profits when steering is not possible. To understand this, note that

in case b) above, f > u−c renders the low-quality seller irrelevant. Meanwhile, in case a), the

low-quality seller does constrain the high-quality seller’s pricing on M , but because the high-

quality seller is a monopolist in the direct channel, it can adjust its direct price downwards,

so the amount of leakage is independent of u. Indeed, note that phm−phd = min
{
f
2
, µ
}

, which

is exactly the same as in the baseline. This means that the high-quality seller makes lower

profits than in the baseline model, but induces the same amount of leakage.

Consider now the case when M can steer. We make the same assumptions about M ’s

steering decision as in the main text: given a set of prices chosen by the two sellers, M shows
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the seller that induces the least amount of leakage subject to offering non-negative utility to

buyers via M , and when indifferent, it shows the high-quality seller.

We first prove the following result.

Lemma 6 If the low-quality seller is only active on M and M does not (or cannot) steer,

then M ’s profits are

Π∗ =


u− c if µ ≤ u− c
µ
2

if u− c < µ ≤ v − c
(v − c)

(
1− v−c

2µ

)
if µ > v − c

. (16)

Proof of Lemma 6

Again, the high-quality seller makes all sales on and off M (similar argument to that in

the proof of Proposition 6 in the main text, but simpler). Given that Sl does not have a

direct channel, everything is as if it had one but chose to set plm = pld. Furthermore, there is

no reason for Sl to set plm < u, so Sl sets plm = max {u, c+ f}.
If f > u− c, then Sl is irrelevant, so everything is as in the baseline, meaning M ’s profit

is f
(

1−min
{

f
2µ
, 1
})

provided f ≤ v − c.
If f ≤ u−c, then Sl is relevant and induces no leakage. Thus, in order to be recommended,

Sh must induce no leakage either, meaning we must have phd = phm = v. This means M will

recommend Sh and make profits equal to f .

So M ’s profits as a function of f are

Π (f) =


f if f ≤ u− c

f
(

1− f
2µ

)
if u− c < f ≤ min {2µ, v − c}

0 if f > 2µ

Optimizing over f , it is easily seen that we obtain the profit expression Π∗ given in the

text of the Lemma.

�

First, note that the profit expression Π∗ given in (16) is increasing in u, which confirms

that even without a direct channel, a more competitive low-quality seller is better for M

when it can steer.

Second, comparing with M ’s profit in the baseline given by (6), it is apparent that the

two profits are equal except in the range µ ≤ u − c, where the profit with a competing

low-quality seller without a direct channel is strictly higher. So adding the low-quality seller

is weakly better for M .
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Finally, it can be easily verified that M ’s profit with steering when the low-quality seller

does not have a direct channel (16) is weakly lower than M ’s profit with steering when the

low-quality seller has a direct channel (9) and (8).
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