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Abstract

Many online platforms and other technology-enabled firms including the likes of Amazon,

Goodreads, LinkedIn, Netflix, StitchFix, Tinder and YouTube make use of some type of rec-

ommender system to help their users discover relevant products, people, or content, thereby

increasing the value of the services they offer. In this paper we model how a recommender

system works, and use the model to investigate, both theoretically and empirically, what is the

value provided by user data. Value is created in our setting by customization, selection and

screening. We determine how the value of data varies with the number of target items available

for the user, the number of users that data is gathered from, the number of features that are

taken into account in the customized prediction, and the degree of misalignment between the

platform’s and user’s interests.

Keywords: collaborative filtering, machine learning, big data.

1 Introduction

Recommender systems which provide users with customized recommendations on items to try have

become widely used by tech firms, both big and small, and represent one of the most important

applications of big data and machine learning in the economy. Despite their widespread adoption,

there is surprisingly little economic analysis of how they work and what value they create. In this

paper, we build a model of a recommender system that makes customized recommendations of

items to users based on their and other users’ past feedback (i.e. it uses collaborative filtering).

Our objective is to try to quantify the value created by such recommender systems, and dig into

the sources of the value creation and the shape of the resulting learning curve. We do this first

using theory and then based on data.
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In the model there is a set of observable features which a platform has user feedback on. We

will focus on the case that the user feedback takes the form of ratings on items, but the setting can

accommodate other features such as user profiles or users’ browsing history as long as there are a

finite number of possibilities. The platform makes a recommendation to a new user about which

item to try (possibly none) from a set of items that the user hasn’t tried before. We call these items

target items. To do so, the system learns, using the ratings from existing users, how the items,

including ratings on the target items, are correlated with each other, and subsequently estimates

the probability that the new user will like each target item based on the user’s ratings on other

items. Based on the learning, the system selects an item with the highest estimated probability

and recommends it to the user if the probability is above a certain threshold. Once the item is

recommended to the user, the user decides whether to try it or not. Users get a certain positive

payoff if they try and like the item, a certain negative payoff if they try and dislike the item, and

a zero payoff if they don’t try the item. We focus on a class of recommender systems that use a

statistically consistent estimator for the true probability the user likes the target item.

Our paper provides three main sets of results. The first of these is to quantify the value that our

class of recommender systems creates and explore how this varies with the number of target items

available for the user, the number of users that data is gathered from, the number of items that

are taken into account in the prediction, and the threshold adopted for making recommendations.

We do this by decomposing the value created by the recommender system into three components

according to the value creation process: customization, selection and screening. The system selects

and screens items for users, and more detailed customization helps by improving the precision

offered by these two functions. Intuitively, data from a larger user base enhances learning about

the correlation structure among the items. Based on the learning about the correlation between

items, customizing recommendations contributes to the value created for users by segmenting users

into groups of similar historical feedback, and then by making group-specific recommendations.

This allows the platform to select the best item for each group and, at the same time, to screen

out items deemed not suitable for the group. After presenting the value and its decomposition,

we show that when the threshold level is optimally chosen for users, additional customization,

i.e., finer segmentation of users, always (weakly) increases the value to users, and we provide

a necessary and sufficient condition under which the marginal value of customization is strictly

positive. However, when the threshold is not aligned with users’ interest, we show how there

is scope for customization (or more customization) to strictly hurt users. Finally, we show that

with one additional mild assumption on the class of recommender systems considered and under our

benchmark payoff specification, there is a positive but diminishing data network effect. Specifically,

the marginal value to a new user of having more other users (to train the system on) is always

positive, but diminishing.

Our second main contribution is to propose a specific Bayesian recommender system that im-

poses few constraints on the learning process, yet is amenable to theoretical and empirical analysis.
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This involves Bayesian learning from data about the unconstrained correlation structure of multiple

items and Bayesian estimation of the conditional probability that a user will like each of the target

items based on the user’s ratings on other items. Our probabilistic approach has several advantages

over traditional methods such as matrix factorization or the nearest neighbor approach. Notably,

we are able to present a closed-form representation of the estimated probability instead of an algo-

rithmic representation. This not only allows our estimation to be more easily interpreted but also

enables us to take our theory to the data and consider a variety of counterfactual experiments.

Our third main contribution is to empirically quantify the level and statistical significance of

the theoretical results. To do so, we use a publicly available dataset containing over four million

anonymous joke ratings from 73,421 users, and consider several counterfactual experiments. First,

for each target item, we evaluate and compare the value created for users under three different

scenarios: users trying an item without receiving any information from a recommender system,

deciding whether to try the item after reviewing the average rating of the item from past users,

and following the customized recommendations of the system we characterize. We find significant

improvements in user value when switching from the first scenario to the second (30.4%), and

also from the second scenario to the third (33.7%). The value addition is even more significant

when the recommender systems can choose from multiple target items.1 We observe an increase of

132.4% in the average utility when switching from the first scenario to the second and an increase

of 7.8% when switching from the second scenario to the third. Second, after first showing that the

marginal value of additional users and the marginal value of customization are both positive but

diminishing in our data, we assess the extent of complementarity or substitutability between these

two dimensions of learning. We find the number of previous users exhibits strong complementarity

with the degree of customization when both the number of users and the degree of customization is

low, but this complementarity disappears quickly as the system accumulates data from more users.

Finally, we estimate the users’ utility loss due to the possible misalignment of interests between

the platform that collects user data and its users, and show how this misalignment of interests can

reduce the value created from customization.

The rest of the paper proceeds as follows. In Section 2 we survey the related literature. In

Section 3 we define a recommender system and develop a theory of value created by this recom-

mender system. In Section 4 we introduce the specific Bayesian learning and prediction model,

which we apply to data in Section 5 to obtain our empirical findings. Section 6 explores a few

possible extensions of our framework, while Section 7 briefly concludes.

2 Related Literature

There is by now an extensive literature in computer science that proposes and compares different

recommender systems. Lu et al. (2015) provides a survey. Rather than finding the recommender

1We consider the situation that the systems choose one item from three target items.
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system that works best for a particular application, we are primarily interested in understanding

the implications of a fairly generic recommender system for the value of data (including evaluating

the value of customization in recommendations and the misalignment of interests between platforms

and users). Thus, we focus on a large class of recommender systems based on collaborative filtering

that lends itself to theoretical analysis. We also develop a Bayesian recommender system that

belongs to this class to empirically explore new questions that the computer science literature has

not addressed.

Our paper differs from the substantial economics literature on learning from past users, most

of which either assume users’ values over the items are independent (e.g. Gittins (1979), Weitzman

(1979) Olszewski and Weber (2015), Papanastasiu et al. (2018) and Wolitzky (2018)) or assumes

users have perfectly correlated values (e.g. the literature on social learning and herding, such as the

work of Banerjee (1992), Smith and Sørensen (2000) and Acemoglu et al. (2011)). Of particular note

is Kremer et al. (2014) and Che and Hörner (2018) who study the recommendations of a designer

that maximizes social welfare. They take a mechanism design approach in which the designer

incentivises users to try a product by manipulating their belief in order to promote exploration of

the product (or multiple uncorrelated products), which benefits later users. In contrast, the learning

in our study takes place over multiple products that are correlated with each other according to

some unknown structure, but for most of our analysis we shut down the exploration motive which

is the main focus of Kremer et al. (2014) and Che and Hörner (2018).

Another strand of literature explores how user data and machine learning, including recom-

mender systems, shape market outcomes. For instance, Bergemann and Ozmen (2006) uses a

two-period model to study how the adoption of a recommender system by a seller affects its pricing

when it competes with a competitive fringe of sellers that do not have a recommender system. On

the other hand, Calvano et al. (2020) focuses on reinforcement learning and studies how algorithmic

pricing adopted by competitive firms can lead to a price supported by a tacit collusion. Biglaiser

et al. (2019), de Cornière and Taylor (2020), Farboodi et al. (2019), Hagiu and Wright (2021) and

Prüfer and Schottmüller (2021) consider how equilibrium outcomes between competing firms are

affected when firms can improve their offerings by learning from past customer data, as is the case

under a recommender system. Bergemann et al. (2021) and Ichihashi (2020a) consider the problem

faced by a data intermediary and the resulting market outcome when data from a customer contains

relevant information for others. Unlike these articles, we do not consider the market implications of

recommender systems, and indeed abstract from any prices being charged to consumers.2 Rather,

we focus on the recommender system itself and study how it and the richness of the data it collects

together create value.

At the same time, some authors have empirically investigated the economic returns to data in

terms of forecast accuracy (Bajari et al. (2019), Claussen et al. (2021), Chiou and Tucker (2017)

2For many of the firms we have in mind, they either do not charge consumers, or if they do, they charge on a
subscription basis rather than being paid based on whether the consumer follows the recommendation or not.
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and Schaefer and Sapi (2021)). The most related is Schaefer and Sapi (2021). Testing the impact of

data size on search quality, they highlight the importance of both the volume of previous searches

on the same keyword (across-user learning) and the search histories of individual users (within-user

learning). It is found that both factors contribute to higher search quality, and that they comple-

ment each other. Relative to this burgeoning literature, our paper provides the microfoundations

for the learning curves underlying these types of approaches, showing how learning benefits users in

terms of user surplus rather than just the accuracy of the recommendations. It measures the value

of data both theoretically and empirically within a unified framework, which allows us to conduct

counterfactual experiments as different aspects of the recommender system are varied.

In our empirical analysis, the Bayesian recommender system we develop is closely related to

Chien and George (1999), which also takes a Bayesian approach in making predictions. Among the

commonly used recommendation techniques involving collaborative filtering (Sarwar et al. (2001),

Schafer et al. (2007) and Elahi et al. (2016)), content-based filtering (Pazzani and Billsus (2007)

and Lops et al. (2011)) and knowledge-based filtering (Burke (2000) and Aggarwal (2016)), the

probability-based Bayesian collaborative filtering approach we adopt has the advantage of tractabil-

ity. Building upon a probabilistic model, we obtain closed-form representations of the predictions.

While Chien and George (1999) introduces a prediction mechanism based on the users’ similarities

(often referred to as user-based collaborative filtering), our approach focuses on the possible corre-

lations among items (often referred to as item-based collaborative filtering). In our approach, we

partition the users into subgroups according to their historical ratings, and then try to measure

similarities between the rated items and each of the target items for each subgroup.

Finally, note that throughout the paper we abstract from any privacy concerns of the firm’s

collection of data, which is the subject of another important literature related to user data (e.g.

see Choi et al. (2019) and Acemoglu et al. (2021)).

3 Value of data

3.1 The model

A firm (which we refer to as a platform to reflect that most of the examples we have in mind are

digital platforms) has I ≥ 1 items to consider recommending to a target user and chooses an item

to recommend to the user who can have either a positive or a negative experience with the item.

Each of the I items is called a target item and we denote the set of target items by I . The user

has tried C ≥ 0 items before and we call them conditioning items as the platform can customize

its recommendation based on the user’s experiences with the C items.

We assume that a user receives a payoff of v1 > 0 from a positive experience and v0 ≤ 0 from

a negative experience with a target item. On the other hand, the platform gets w1 ∈ R from the

user’s positive experience and w0 ∈ R from a negative experience. If the user does not try the item,

both the user and the platform receive a payoff of zero. The probability of either experience with
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a target item is initially unknown to the platform or to the target user. Thus, the platform wants

to estimate the probability for each target item using the data it has accumulated before making

a recommendation. We first define the recommender system and then describe the user behavior

responding to a recommendation from the system.

Data

The data X is an M × N matrix which is a collection of ratings from the N ≥ 1 users on M

items. Specifically, the data contains previous users’ ratings on the target items. For analytical

convenience, we let the first C rows of X contain ratings of the conditioning items, whereas the

remaining I rows represent ratings of the target items. Thus, the set of conditioning items is

{1, · · · , C} and that of target items is I = {C+1, · · · ,M}. Assume each item i ∈ {1, 2, · · · , C, C+

1, · · · ,M} has a finite number of possible ratings. Without loss of generality, the set of possible

such ratings of item i is denoted by {0, 1, · · · , ni} for ni ∈ N. Since we are interested in the binary

outcomes (positive or negative) from each of the target items, we assume ni = 1 for i ∈ I , where 0

represents a negative experience and 1 represents a positive experience with the item. Some users

may not have ratings on some of the M items. If a user has a missing rating of item i, we denote

this by ∅. Thus, in the data X, a typical element xij ∈ {∅, 0, 1, · · · , ni} records user j’s rating of

item i. Without loss of generality, we reserve the first column of X to denote the target user’s

ratings. Naturally, we have xi1 = ∅, ∀i ∈ I given the target user’s ratings of target items must be

predicted.

Data X is said to be complete if we have xij 6= ∅, ∀i,∀j s.t. i ≤ C or j 6= 1. In other words,

the platform has complete data if the only missing ratings are the target user’s rating of the target

items. On the other hand, if the condition for complete data is not satisfied, the data is said to

be partial. To reduce the notational burden, we focus here on the case in which the existing user

data is complete, and we explain the extension to partial data in Online Appendix A. A complete

set of data can always be obtained by using at least one tester who evaluates all the items on the

platform before launching it to real users.3

Statistical model

For a given target user, the platform makes I estimations, one for each target item. To formally

define the variable which the platform wants to estimate with regard to a target item i, we begin

by defining the possible outcomes that a user can have with the C conditioning items and a target

item. An outcome r is a vector of length C+1 that records the user’s ratings of the C conditioning

items and a target item. The kth entry of r corresponds to a rating, which is not ∅, to the kth item.

Let R be the collection of all such outcomes r. For example, consider a platform that conditions on

the reported rating of item 1 in making predictions about item 2 and item 3, i.e., C = 1 and I = 2.

3For example, Netflix hires editorial analysts whose main duty is to research, tag, annotate, rate, and analyze
movies and TV shows.
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The main example we use throughout the paper is represented in Table 1. The set of outcomes R

in this case is given by R = {(1, 1), (1, 0), (0, 1), (0, 0)}.

user 1 user 2 user 3 user 4 user 5

Rating on item 1 1 1 0 1 1

Rating on item 2 ∅ 1 0 1 0

Rating on item 3 ∅ 0 1 1 0

Table 1: Main example

The target user’s ratings on the C conditioning items can be represented by r′, which is a

subvector of r ∈ R whose length is C. We refer to r′ as a history. The set of all such histories of

length C is denoted by R′. When C = 0, we take R′ = ∅. By slightly abusing notation, we denote

the vector of dimension C + 1 created by adding 1 to the end of r′ by (r′, 1). Similarly, (r′, 0)

denotes the vector created by appending 0 to the end of r′. Any r ∈ R one-to-one corresponds to

either (r′, 1) or (r′, 0) for some r′. For example, when C = 2, r = (1, 0, 1) is equivalent to (r′, 1) for

r′ = (1, 0).

For each target item i, the outcome is governed by an unobserved probability vector pi =

(pir)r∈R, where pi is drawn according to a distribution function Πi. We assume that all Πi are

mutually independent and the support of Πi is the interior of an |R| − 1 simplex. This realized

probability pi is referred to as a correlation structure as it reveals how the user experience with the

target item i and conditioning items are correlated each other. Note pi can take any value as long

as it satisfies
∑

r∈R p
i
r = 1 and pir ≥ 0, ∀r ∈ R, i.e., it belongs to the standard |R|−1 simplex. The

true probability of event r′ is denoted by pir′ and it is true that pir′ = pi(r′,1) + pi(r′,0).

Recommender system

With these specifications, the platform wants to estimate the probability that the target user has a

positive experience with target item i given that she has history r′. Using the correlation structure

pi, it can be represented as

zi(r
′) =

pi(r′,1)

pir′
. (1)

In our main example, the estimand associated with item 2 and item 3 are respectively

z2(1) =
p2(1,1)

p2(1,1) + p2(1,0)
and z3(1) =

p3(1,1)

p3(1,1) + p3(1,0)
.

The fact that the same probability zi(r
′) applies to all the users with the same history r′ does not

necessarily mean that the users share identical preferences. This is because zi(r
′) only represents

the average of the probabilities of liking item i of the group of users with history r′. As we will see
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shortly, different target users can have different preferences over item i in the model. Nonetheless,

any two users with the same history are treated equally by the platform in terms of its estimations

and subsequent recommendations. As a more detailed history becomes available to the platform

(i.e., higher C), it is possible for the platform to make more precise estimations. One of the main

contributions of the current work is to study how this improvement in the precision benefits (or

harms) the users.

Let ẑNi (r′) be a pointwise estimator of zi(r
′) in (1) when the target user’s history is r′ and there

are N −1 previous users. The platform also decides a threshold τ(r′) ∈ [0, 1] that applies to history

r′ users. When ẑNi (r′) is below this threshold, the item i is deemed not suitable for the history

r′ target user, and therefore, the system does not recommend this item to the user. We are now

ready to define a recommender system.

Definition 1 A recommender system is a collection of functions

{{ẑNi (r′)}i∈I , τ(r′)}r′∈R′

where ẑNi (r′) maps the data X to a unit interval and τ(r′) ∈ [0, 1] for each i and r′. Given data

X and the target user’s history r′, target item i is recommended to the target user if and only if

ẑNi (r′)(X) ≥ maxj∈I {ẑNj (r′)(X), τ(r′)}

Note that the value of data is governed by the particular recommender system that is in use.

Depending on the estimator in a recommender system, different inferences can be drawn from

the same data, which, in turn, can lead users to different decisions, and so as a result, different

subsequent learnings. Furthermore, if we were to take the platform’s exploration motive into

account, a recommender system will tend to apply a relatively lower threshold level above which

an item is recommended and increase the threshold as it accumulates more data until the threshold

converges to a certain level.

Inevitably, the value from a specific recommender system cannot represent the universal value

that data confers through any recommender system. Nevertheless, in the limit case as N →∞, we

can evaluate the value that users can enjoy from a large class of recommender systems, which we

call consistent recommender systems. A recommender system is said to be consistent if, for each

r′, the estimator ẑNi (r′) is statistically consistent for zi(r
′). Formally, a consistent recommender

system can be defined as follows.

Definition 2 A recommender system is said to be consistent if ẑNi (r′) converges in probability to

zi(r
′) ∈ [0, 1] for each r′ ∈ R′.

The existence of a consistent recommender system is guaranteed. We develop a Bayesian rec-

ommender system which satisfies the consistency requirement in Section 4. Although consistency
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is an asymptotic property, it is one of the most basic requirements for a recommender system to

satisfy because the violation of consistency leads to a persistent error in predictions, which is clearly

undesirable. Since consistency is a weak requirement, examples of consistent recommender systems

are abundant. For example, the maximum likelihood estimator or Bayesian estimators with any

convergent threshold are consistent recommender systems.

In what follows we focus on consistent recommender systems, and study the asymptotic value

a recommender system creates and the value that additional customization in recommendations

offers to users. Although the user value from any consistent recommender system converges to the

asymptotic value as more data is available to the system, the value when only finite data is available

depends on the specific recommender system in use.4 To maintain the generality of our results even

in finite data cases, we focus on a subclass of consistent recommender systems that satisfy a simple

condition which we introduce in Section 3.5. Examples of such recommender system include the

maximum likelihood estimator and a Bayesian recommender system which we introduce in Section

4.2. The latter is the system we use for our empirical analysis.

User behavior

For the target user, the true probability of a positive experience with a target item is denoted

by qi and it is drawn from a distribution function Qi over the unit interval independently across

the history r′ users. A natural restriction we impose is the mean of Qi is pi(r′,1)/p
i
r′ as the ratio

is the average probability of positive experiences with item i of the history r′ user group. Thus,

Qi is dependent on the realized pi(r′,1)/p
i
r′ and one can think of Qi as an individual noise term

that captures heterogeneity among r′ history users. While both Πi and Qi are assumed to be

common knowledge, the realizations pi and qi are not observable to users. As we focus on the

asymptotic value, we consider the behavior of the target user who assumes the system has access

to an asymptotically large database. Additionally, the user knows the recommended item has the

highest average probability of positive experience for the history r′ user group and it is above the

threshold level τ(r′).

Under this prior belief and knowledge, if an item is ever recommended to the target user, the

user updates his belief using {Πi}i∈I , {Qi}i∈I and τ(r′). Precisely, for the recommended item

i∗, the updated belief is a compound distribution of two distributions: (1) the distribution of

the largest value above τ(r′) among the realizations from {Πi}i∈I and (2) Qi
∗
.5 This compound

4The value that the Bayesian recommender system characterized in Section 4 offers to users when it learns from
a finite dataset is given in Online Appendix B.

5For instance, if Πi is a Dirichlet distribution with unit parameter for all i in I , pi(r′,1)/p
i
r′ follows Beta(1, 1).

Accordingly, the distribution associated with the recommended item is the highest order statistic of I uniform
distributions. At the individual level, let qi be a draw from a Bernoulli trial: 1 with probability pi(r′,1)/p

i
r′ and

0 otherwise. For simplicity, let τ(r′) = 0. In this case, the resulting H̄i∗ is a Bernoulli distribution with weights
I/(I + 1) on 1 and 1/(I + 1) on 0. Here, I/(I + 1) is the mean of the largest order statistic of I independent draws
from the uniform distribution. Similarly, in case of a continuous distribution at the user level belief, we can find such
a compound distribution.
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distribution for the recommended item and its mean respectively is denoted by H̄ i∗ and µ̄i
∗
. On

the other hand, for the non-recommended item i 6= i∗, the distribution is a compound distribution

of (1) the distribution of the non-largest value among realizations from {Πi}i∈I when the largest

value is above τ(r′) and (2) Qi. This distribution is denoted by H̄ i and its mean is denoted by

µ̄i.6 Note that we have µ̄i
∗ ≥ µ̄i ∀i ∈ I as each Qi has mean pi(r′,1)/p

i
r′ . In contrast, if no item

is recommended, the user updates the belief for i using a truncation of the original distribution.

Because each pi(r′,1)/p
i
r′ is below τ(r′), the updated belief for i is a compound distribution of (1)

the original distribution Πi truncated at and above τ(r′) and (2) Qi. By H i and µi, we respectively

denote the distribution of i when no item is recommended. The inequality µ̄i
∗
> maxi∈I {µi} holds

true as µ̄i
∗ ≥ τ(r′) and µi < τ(r′).

When the correlation structure is known to the platform, it is optimal for the user if the item

with the highest probability is recommended if and only if the probability of liking the item is

above −v0
v1−v0 . We denote this user-optimal threshold level by τu. Similarly, provided the correlation

structure is known to the platform, the maximum of the platform’s surplus can be achieved by the

threshold τp = max{ −w0
w1−w0

, 0}. By taking the maximum, we ensure τp stays positive. We rule out

two trivial cases. First, if µ̄i
∗
< τu, the user never tries an item regardless of the recommendation.

If this is true, the value a recommender system creates is zero. Second, if µi ≥ τu for some i, the

user tries item i even if no item is recommended to try. However, in most real-world applications,

platforms are biased towards usage and exploration, and therefore, the threshold adopted by the

platform is lower than the user-optimal threshold level. Thus, we focus on the case τ(r′) ≤ τu

which rules out the second case. In the remaining case, which is the focus of this study, we have

(1) µ̄i
∗ ≥ τu and (2) µi < τu. It is easy to see that in this case the target user always follows the

recommendation from the platform.7

3.2 Value of data and its decomposition

Focusing on a consistent recommender system, we start by offering a characterization and decom-

position of the value offered by data. Specifically, value is created for users in two steps—the system

learns the correlation structure p from ratings left by previous users and it then personalizes predic-

tions based on the target user’s history r′. We can compare this full learning, which combines both

learning across different users and within the same user, to the case without any customization, so

that the system has to recommend items to the target user without any information on the target

user. We call this latter case, a generic recommendation since it involves no customization to the

user. Formally, using our terminology, it can be defined as follows. Let zGi be the true probability

that a user has a positive experience with target item i, i.e., zGi =
∑

r′∈R′ p
i
(r′,1).

6Continuing on the example of the previous footnote, the average probability density function of pi(r′,1)/p
i
r′ when

i is not recommended is I
I−1

(1 − zn−1). Using this, we can derive that the resulting H̄i is a Bernoulli distribution

with weights I
I−1

(
1
2
− 1

I+1

)
on 1.

7The example with the utility specification (v1, v0) = (1,−1) belongs to this case.
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Definition 3 A generic recommender system is a recommender system {{ẑGi }i∈I , τ
G} such that

ẑGi is a consistent estimator for zGi .

Both the estimator and the threshold of a generic recommender system do not depend on a

particular history of the target user. Generic recommendations are closely related to the average

rating mechanism commonly found in review sites such as those used on Amazon’s marketplace,

Apple’s Appstore, eBay, Yelp, and so on, and widely studied in the literature (see Dellarocas et al.

(2006) for a survey on such rating systems). In this simple alternative to a recommender system,

users’ ratings are averaged, and users can use this average score to determine whether to “use”

the item. The direct relationship between a generic recommender system and the average rating

mechanism is studied in Section 4.2.

We decompose the learning from a recommender system into its generic and customized com-

ponents. Note that we focus on the ex-ante value of data. The actual value created by data is

affected by the realization of data and a target user’s history. For example, because more users tried

item 1, the data in the example of Table 1 is generally more useful to the users who already had a

positive rating of item 1 than those users who had a negative rating of item 1. Thus, in evaluating

the value of data, we first find the ex-post value in terms of a particular realization of data and a

target user’s history, and then we quantify the value from the ex-ante perspective evaluated with

respect to the true probability measure p. That is, to find the value of data, we take a weighted

average over the values created from all possible realizations of data, with the weights being the

true underlying probability measures.

Lemma 1 characterizes the steady-state utility that the target user and the platform can expect

from a consistent recommender system and a generic recommender system when there is only one

item available to the user.

Lemma 1 (I = 1 case) Suppose there is only one item available to the target user, i.e., i = C+ 1.

1. For any consistent mechanism, the expected utility to the target user and to the platform

respectively converges to∑
r′∈R′

1{pi(r′,1) ≥ τ(r′)pir′}(v1pi(r′,1) + v0p
i
(r′,0)) and

∑
r′∈R′

1{pi(r′,1) ≥ τ(r′)pir′}(w1p
i
(r′,1) + w0p

i
(r′,0)).

2. The expected utility to the target user and to the platform from a generic recommendation
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respectively converges to

1
{ ∑
r′∈R′

pi(r′,1) ≥ τ
G
} ∑
r′∈R′

(v1p
i
(r′,1) + v0p

i
(r′,0)) and

1
{ ∑
r′∈R′

pi(r′,1) ≥ τ
G
} ∑
r′∈R′

(w1p
i
(r′,1) + w0p

i
(r′,0)).

The derivation of the above expressions proceeds as follows. When the system completes its

learning about p, the target item is recommended to a user with history r′ if and only if
pi
(r′,1)
pi
r′
≥

τ(r′). Once the item is recommended and tried by the user, the user receives v1
pi
(r′,1)
pi
r′

+v0
pi
(r′,0)
pi
r′

. The

ex-ante utility is derived taking into account that the target user has a history r′ with probability pir′ .

The same logic can be applied in deriving the other utility characterizations. The key difference in

the expected utilities between the two systems directly comes from the difference in their estimators.

A consistent mechanism for history r′ target user seeks to estimate the conditional probability

that the user likes the item, i.e.,
pi
(r′,1)
pi
r′

. This conditional probability averages out to the total

probability
∑

r′∈R′
pi
(r′,1)
pi
r′
· pir′ , which is the estimand of a generic recommender system that does

not offer customization.

In Proposition 1 we evaluate the expected utility of a target user when the system adopts the

threshold level that is optimal for users and decompose the value into two parts: the value from

learning the correlation structure and the value from customization.

Proposition 1 1. For the user-optimal threshold, in any consistent recommender system, as

N →∞, the expected utility to a user converges to∑
r′∈R′

max
i∈I
{v1pi(r′,1) + v0p

i
(r′,0), 0}.

2. For the user-optimal threshold, the expected utility created from a generic recommendation in

the limit as N →∞ is

max
i∈I

{ ∑
r′∈R′

(v1p
i
(r′,1) + v0p

i
(r′,0)), 0

}
.

Customization can be regarded as a finer segmentation of users according to observable features.

To see why a finer segmentation necessarily leads to a higher user welfare under the user-optimal

threshold level, consider a history r′ group of users whose average probability of liking a (unique)

target item is given by z. Under the user-optimal threshold, the average utility of the history r′

users is max{v1z + v0(1 − z), 0}. If a further segmentation of r′ users into subgroups r′a and r′b
is available to the system, the system makes two separate recommendations according to the two

new average probabilities, za and zb, of the two subgroups. Let pa portion of r′ users is assigned

12



to r′a subgroup. The expected utility of users under segmentation is then pa max{v1za + v0(1 −
za), 0}+ (1− pa) max{v1zb + v0(1− zb), 0}, where z = paza + (1− pa)zb. The customization reveals

the subgroup that is on-average better off trying (or not trying) the item, which in turn increases

the overall expected utility. In Figure 1, the expected utility without customization is zero while

with customization it is (1− pa)(v1zb + v0(1− zb)).

Figure 1: Customization under the user-optimal threshold

The difference between the two expressions in the proposition is due to the different degree of

customization each recommender system offers. A consistent recommender system makes history-

dependent recommendations by selecting the best item for each group of history r′ users. Instead,

a generic recommender system only selects the item on average best for every user. Therefore,

the value from generic recommendations in Proposition 1 can be attributed to pure across-user

learning. On the other hand, the difference between the value from consistent recommendations

and the value from generic recommendations can be attributed to the customization benefits that

the consistent recommendation provides. Note that, under the user-optimal threshold, the expected

utility of the target user created from a consistent recommender system is always positive, and it

is at least as great as the expected utility generated from the generic recommendation, which is

also always positive. That is, both the pure across-user learning and the customization component

always add value to users when the recommender system is user-centric.

Note that, although the two systems differ in their degrees of customizations, they share the

same value creation process: a recommender system selects the most suitable item and at the same

time, screens items not suitable for the user. Obviously, the more items in the target item pool,

the more value is created from both of the systems. On the other hand, the benefit from screening

is maximized when the threshold is properly chosen for the user.

Example 1: The main example

To illustrate and better understand how a recommender system adds value through learning and

customization, consider our main example in Table 1 and assume (v1, v0) = (1,−1). In the example,

the platform makes a recommendation between item 2 and item 3, or none based on the target

user’s rating on item 1. According to Proposition 1, when the threshold level is τu, the expected

13



utility of a user under a consistent mechanism in the limit as N →∞ is given by

max{p2(1,1) − p
2
(1,0), p

3
(1,1) − p

3
(1,0), 0}︸ ︷︷ ︸

Recommendation for history 1 user

+ max{p2(0,1) − p
2
(0,0), p

3
(0,1) − p

3
(0,0), 0}︸ ︷︷ ︸

Recommendation for history 0 user

. (2)

Depending on the user’s history, different items can be recommended. For example, if p2(1,1)−p
2
(1,0) >

max{p3(1,1) − p
3
(1,0), 0} and 0 > max{p2(0,1) − p

2
(0,0), p

3
(0,1) − p

3
(0,0)}, item 2 is recommended to users

who had a positive experience with item 1 but no item is recommended to the user if she had a

negative experience with item 1. On the other hand, under a generic recommender system, which

only makes use of across-user learning, users receive the same recommendation regardless of their

history. The value from a generic recommendation with the same threshold being applied is given

by

max{p2(1,1) + p2(0,1) − p
2
(1,0) − p

2
(0,0), p

3
(1,1) + p3(0,1) − p

3
(1,0) − p

3
(0,0), 0}︸ ︷︷ ︸

No customization in recommendations

. (3)

It is clear that the value from customization is always weakly positive. On the other hand, it is

strictly positive if and only if users who had different experiences with item 1 receive different

recommendations.

Example 2: Degree of correlation and value from customization

The correlation between a target item and conditioning items on which the system customizes its

recommendation plays an important role in determining the value from customization. To illustrate,

consider the case in which there are only one target item and one conditioning item: I = 1 and

C = 1. A consistent recommender system conditions its recommendation of the target item (item 2)

on the user’s experience with item 1. To see how correlation is related to the value a recommender

system creates, we impose a structural assumption on p2. Consider a specific correlation structure

in which the correlation is captured by a parameter γ: p2(1,1) = γp2(1,0) and p2(0,0) = γp2(0,1). So, if a

user has a positive experience with item 1, she is γ times more likely to have a positive experience

with item 2 than a negative experience. Similarly, if a user has a negative experience with item

1, she is γ times more likely to have a negative experience with item 2 than a positive experience.

Denote the probability of a positive experience with item 2 by t, i.e., t = p2(1,1) + p2(0,1). Under

this specific structure, the value of item 2 in terms of t under our recommender system with its

customized recommendations is

max{t− 1

γ + 1
, 0}+ max{t− γ

γ + 1
, 0}.

The value from the generic recommendation is max{t − (1 − t), 0}, while the value without any

recommendation is t−(1−t) if the user tries the item. Figure 2 plots the value of item 2 in terms of

its success probability t when γ = 2 and when γ = 10. As we can see, the value from customization
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increases as we increase the correlation parameter γ.

0.2 0.4 0.6 0.8 1.0
t

-1.0

-0.5

0.5

1.0

Expected

utility

No recommendation

Generic recommendation

Consistent recommendation γ=2

Consistent recommendation γ=10

Figure 2: Value of customization

Before turning to study the marginal benefit from customization and an extra data point8,

some remarks are worth making with respect to Proposition 1. First, the utility representation

of the proposition can be extended to accommodate the situations in which the user has multiple

demands and the platform recommends multiple items in response to the demands. Suppose that

the user is willing to try at most D items and the user utility is defined to be the sum of the

utilities from each item the user tries. By v1p
(k)
(r′,1) + v0p

(k)
(r′,0), we denote the kth largest9 value

among {v1pi(r′,1) + v0p
i
(r′,0)}i∈I for each history r′ ∈ R′. When the platform recommends at most

D items whose predicted probability of liking an item is above the user-optimal threshold level, the

user utility from the recommender systems can be represented as follows10:

Corollary 1 (Corollary to Proposition 1) Suppose the recommender system makes at most

D ≤ I recommendations to a user who is willing to try the items.

1. For the user-optimal threshold, in any consistent recommender system, as N → ∞, the

expected utility converges to∑
r′∈R′

∑
k∈{1,··· ,D}

max{v1p(k)(r′,1) + v0p
(k)
(r′,0), 0}.

2. For the user-optimal threshold, the expected utility created from a generic recommendation in

the limit as N →∞ is ∑
k∈{1,··· ,D}

max
{ ∑
r′∈R′

(v1p
(k)
(r′,1) + v0p

(k)
(r′,0)), 0

}
.

8When data is complete, each set of ratings from a previous user corresponds to an outcome. We call this set of
ratings over C conditioning items and I target items a data point.

9In case of a tie, the lower index i in I takes the lower value for k.
10A minor and straightforward modification to the assumption on the user behavior is required to ensure the user

tries the recommended items.
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Second, it is worth mentioning that our ex-ante approach makes it possible to find the achievable

asymptotic lower bound of prediction error of a consistent recommender system in a simple closed-

form. It can be shown that this lower bound of the error is weakly decreasing in the degree of cus-

tomization. Specifically, suppose that a consistent recommender system {{ẑNi (r′)}i∈I , τ(r′)}r′∈R′
is in use. Let εmi be the number of wrong predictions, both the false positives (negative experience

from a recommended item) and false negatives (unrealized positive experience when no item is

recommended), out of the total of m predictions made about the target items. The prediction error

is defined to be εmi (X)/m. In the limit, using the same logic we used in the derivation of Lemma 1,

the prediction error of a consistent recommender system with the threshold level {τ(r′)}r′∈R′ when

there is only one target item (i = C + 1) converges to

∑
r′∈R′

pir′

(pi(r′,0)
pir′

1

{pi(r′,1)
pir′

≥ τ(r′)

}
+
pi(r′,1)

pir′
1

{pi(r′,1)
pir′

< τ(r′)

})
. (4)

That is, history r′ occurs with probability pir′ , a false positive recommendation is made with prob-

ability
pi
(r′,0)
pi
r′

once the item is recommended to history r′ target user, and a false negative event

happens with probability
pi
(r′,0)
pi
r′

when the item is not recommended to the user. The lower bound

of this asymptotic error can be achieved when the threshold is user-optimal, and it is characterized

as follows for the general I ≥ 1 cases.

Corollary 2 (Corollary to Proposition 1) For C ≥ 0 and I ≥ 1,

1. The asymptotic lower bound of prediction error in a consistent recommender system is

LC =
∑
r′∈R′

min
i∈I

min{pi(r′,1), p
i
(r′,0)}. (5)

2. LC weakly decreases in C.

From the second point of the corollary, it is clear that the lower bound of a generic recommender

system (C = 0) is always weakly higher than that of a consistent recommender system. Additionally,

as can be directly seen from (5), the lower bound is also weakly decreasing as more items are added

to the target item pool, i.e., LC decreases in I.

Lastly, with a slight modification, Proposition 1 can be applied to evaluate the platform surplus

under the platform-optimal threshold level, or the social surplus when the socially-optimal thresh-

old level is adopted by the system. For the platform-optimal threshold, the limit of the platform’s

expected surplus from a consistent recommender system converges to
∑

r′∈R′ maxi∈I {w1p
i
(r′,1) +

w0p
i
(r′,0), 0} whereas that from a generic recommender system converges to maxi∈I

{∑
r′∈R′(w1p

i
(r′,1)+

w0p
i
(r′,0)), 0

}
. Moreover, if we define the social surplus to be the sum of the user surplus and

the platform surplus, the limit social surplus from the two recommender systems are respectively
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∑
r′∈R′ maxi∈I {(v1 +w1)p

i
(r′,1) + (v0 +w0)p

i
(r′,0), 0} whereas that from a generic recommender sys-

tem converges to maxi∈I

{∑
r′∈R′((v1 +w1)p

i
(r′,1) + (v0 +w0)p

i
(r′,0)), 0

}
when the socially optimal

threshold level is being applied, which is −v0−w0
v1−v0+w1−w0

.

3.3 Harmful customization

While Proposition 1 shows customization always (weakly) benefits users under the user-optimal

threshold, it can also be shown that such a user-optimal threshold is the only threshold level for

which customization benefits the user regardless of the correlation structure and user history.

Proposition 2 For any τ(r′) 6= τu and for any I ≥ 1, there exists a collection of I correlation

structures q = {qi}i∈I such that the history r′ target user is strictly worse-off from customization

when the true correlation structures are q.

The same argument holds for the platform value or the social value. The customization in predic-

tions is advantageous to the target user, the platform or the society only when the threshold level

is properly chosen. Put differently, when τu 6= τp, either the user or the platform will be strictly

worse off under some correlation structures when customization is taken place. Thus, customization

has the scope to hurt users and total welfare if the platforms’ interests cause its threshold level to

diverge from the user-centric or welfare-centric thresholds. We revisit this issue in Section 3.4.

The value representation in Proposition 1 can be generalized to accommodate an arbitrary

threshold level, τp, adopted by the platform. Under τp, the item with the highest estimated

probability of positive experience is recommended only if it is above τp. The resulting expected

utility to the target user can be represented as follows.

Corollary 3 (Corollary to Proposition 2) Suppose the recommender system applies a thresh-

old level τp. In any consistent recommender system with τp, as N → ∞, the expected utility

generated by the target item converges to∑
r′∈R′

1
{

max
i∈I

v1p
i
(r′,1) + v0p

i
(r′,0) ≥ pr′(v1τ

p + v0(1− τp))
}(

max
i∈I

v1p
i
(r′,1) + v0p

i
(r′,0)

)
.

3.4 Marginal value of customization

As highlighted in the previous section, recommender systems learn about target items not only

from the ratings left on the target items by other users, but also from the ratings left from the

target user on other items so as to better customize the recommendation. Hence, the quality

of a recommendation and the resulting user surplus depend also on the degree of customization

the platform provides. In this section, we study how customization affects user value through

the recommender system. Specifically, we are interested in the effect of changes in the degree of

customization to the value generated by each target item under a recommender system. To do so,
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we isolate the target item by considering the case I = 1, and investigate the sources behind the

value creation process of a recommender system.

Suppose that a consistent recommender system takes one more conditioning item into account

in making a recommendation on the target item. We denote the new item and the target item

respectively by item C + 1 and item C + 2. For simplicity, we assume that item C + 1 can have

binary ratings. In this case, since the recommender system can condition its predictions on one more

item, the predictive accuracy of the target item improves. However, the improvement in accuracy

does not necessarily lead to higher user welfare because of the conflict in interests between the user

and the platform which is captured by the threshold level. Here, we study this marginal benefit or

harm of customization. Since there is only one target item, we save notation by using p for pC+2,

the correlation structure associated with the C + 1 conditioning items and the target item.

Definition 4 For r′ ∈ R′ over items {1, · · · , C}, item C+1 and item C+2 are positively correlated

conditional on r′ if v1p(r′,1,1) + v0p(r′,1,0) ≥ 0 and v1p(r′,0,1) + v0p(r′,0,0) ≤ 0, with at least one

inequality holding strictly. If both inequalities are strict, we say that they are strictly positively

correlated conditional on r′.

When the target item and item C + 1 are positively correlated conditional on r′, users whose

history is r′ over the other C conditioning items are more likely to have net positive utility from

the target item if they liked item C + 1. On the other hand, if they did not like the item, it is

more likely that they have net negative utility from the target item. When (v1, v0) = (1,−1), the

condition is satisfied if we have p(r′,1,1) ≥ p(r′,1,0) and p(r′,0,1) ≤ p(r′,0,0) with at least one inequality

holding strictly. In a parallel way we can define a (strict) negative correlation between item C + 1

and the target item. If item C + 1 and the target item are positively or negatively correlated

conditional on r′ ∈ R′, they are said to be correlated conditional on r′. For strict inequalities, they

are said to be strictly correlated conditional on r′.

We focus on a universal threshold level τ = τ(r′), ∀r′. For each r′, there are two trivial cases

in which an extra degree in customization yields only zero marginal customization effect: when the

threshold level is too high or too low as stated below.

τ ≤min

{
p(r′,1,1)

p(r′,1)
,
p(r′,0,1)

p(r′,0)

}
or τ ≥ max

{
p(r′,1,1)

p(r′,1)
,
p(r′,0,1)

p(r′,0)

}
. (6)

If the former is the case, the item is recommended to the user regardless of the history and the

introduction of the extra customization. This follows from the following equality.

p(r′,1,1) + p(r′,0,1)

pr′
=
p(r′,1)

pr′

p(r′,1,1)

p(r′,1)
+
p(r′,0)

pr′

p(r′,0,1)

p(r′,0)
.

Similarly, in the latter case, the item is not recommended regardless of the introduction of the

extra degree in customization. As a result, the extra customization cannot affect user welfare if (6)
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holds. In what follows, we focus on the remaining case, i.e.,

min

{
p(r′,1,1)

p(r′,1)
,
p(r′,0,1)

p(r′,0)

}
< τ < max

{
p(r′,1,1)

p(r′,1)
,
p(r′,0,1)

p(r′,0)

}
.

In the next proposition, we find that a strict correlation between the newly added item and the

target item is a necessary and sufficient condition under which an extra degree in customization

is (on average) beneficial to users regardless of the misalignment of interests between the platform

and users.

Proposition 3 The marginal customization strictly benefits r′ user for any threshold level if and

only if item C + 1 and the target item (item C + 2) are strictly correlated conditional on r′.

When the newly added item (C + 1) is strictly correlated to the target item for r′ users, the

system can use the item to segment r′ users into subgroups according to their experiences with the

item. By the definition of correlation, one subgroup should have on-average a positive experience

with the target item while the other group does not. Thus, screening the latter subgroup is a

welfare-improving segmentation for all threshold levels.

Next, we consider the expected utility of all users. From Proposition 3, it is evident that the

expected utility is strictly positive if the newly added item and the target item are correlated

conditional on all histories. However, if the newly added item is not correlated with the target item

for some users with particular histories, the expected utility which is represented in Corollary 3

can take a negative value. The following corollary of Proposition 3 finds that this cannot happen

under the user-optimal threshold level. The correlation of the two items for some history of users

is a necessary and sufficient condition for the marginal benefit to be strictly positive.

Corollary 4 Under τu, the benefit from an extra degree in customization is

1. always (weakly) positive and given by∑
r′∈R′

[
max{v1p(r′,1,1) + v0p(r′,1,0), 0}+ max{v1p(r′,0,1) + v0p(r′,0,0), 0}

−max{v1p(r′,1,1) + v0p(r′,1,0) + v1p(r′,0,1) + v0p(r′,0,0), 0}
]

2. strictly positive if and only if ∃r′ ∈ R′ s.t. item C + 1 and the target item are correlated

conditional on r′.

One may wonder how the marginal value of having one more item to customize on is affected

as the total number of items used for prediction increases. This can go in either direction. The

marginal value depends largely on the underlying correlation structure. To see this, let (v1, v0) =
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(1,−1) and consider a platform that has three items under the user-optimal threshold level. The

target item is fixed at item 3 and we compare user surplus under two correlation structures. In

both cases, we will find the expected user utility using Proposition 1 when (1) the platform does

not customize the recommendation, (2) it conditions its prediction on only one other item, and (3)

it conditions its prediction on both items. The two correlation structures are given as follows:

q1 =

(
1

6
,

1

12
,

1

12
,
1

6
,

1

12
,
1

6
,
1

6
,

1

12

)
, q2 =

(
1

6
,

1

12
,
1

6
,

1

12
,

1

12
,
1

6
,

1

12
,
1

6

)
.

When the platform initially does not customize its prediction, the expected utility from item 3 in

both cases is zero as

q1(1,1,1) + q1(1,0,1) + q1(0,1,1) + q1(0,0,1) = q2(1,1,0) + q2(1,0,0) + q2(0,1,0) + q2(0,0,0) =
1

2

On the other hand, if the platform conditions on both items in making a prediction about item 3,

the expected utility to a user is 1
6 in both cases. Now, when the platform conditions only on item

1, the user surplus under q1 is

max{q1(1,1,1) + q1(1,0,1) − q
1
(1,1,0) − q

1
(1,0,0), 0}+ max{q1(0,1,1) + q1(0,0,1) − q

1
(0,1,0) − q

1
(0,0,0), 0}

which is zero. However, under q2, the resulting user surplus is 1
6 . So, under q1, the marginal incre-

ment of expected utility in terms of the degree of customization is increasing while it is decreasing

under q2. The same result holds when we condition on item 2 only.

Suppose now that the system uses the platform-optimal threshold level τ = τp = −w0
w1−w0

. We

assume that w1 > 0, w0 < 0 and τp 6= τu. As is pointed out in Proposition 2 customization can

harm user welfare under some realizations of the correlation structure, p. We identify two situations

under which an extra degree in customization harms history r′ user’s surplus11.

Proposition 4 Let τp be the platform-optimal threshold. A history r′ target user is strictly worse

off from an additional degree in customization if and only if one of the following is true

1.
p(r′,1,1)+p(r′,0,1)
p(r′,1,0)+p(r′,0,0)

< −w0
w1
≤ p(r′,e,1)

p(r′,e,0)
< −v0

v1
, e = 0 or 1

2.
p(r′,1,1)+p(r′,0,1)
p(r′,1,0)+p(r′,0,0)

≥ −w0
w1

>
p(r′,e,1)
p(r′,e,0)

> −v0
v1

, e = 0 or 1.

When an extra degree of customization is introduced to the system, it may generate a false

positive or a false negative for the user if the threshold is not optimally chosen from the user’s

perspective. A false positive is a situation under which the target item is recommended to a user

under the platform-optimal threshold but which would not have been recommended to the user

under the user-optimal threshold. On the other hand, a false negative refers to the situation under

11To provide a more general implication, in this proposition, we discard the assumption τp < τu we imposed before.
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which a user is not recommended the item under the platform-optimal threshold even though the

item would have been recommended under the user-optimal threshold. The first bullet point in

the proposition is related to the false positive situation, whereas the second is related to the false

negative situation. To see this, let r′ = ∅ and e = 1 for simplicity and suppose that the first

bullet point is satisfied. Firstly,
p(1,1)+p(0,1)
p(1,0)+p(0,0)

< −w0
w1

implies that the target item (item 2) will not be

recommended to the user if the recommendation is not customized to the user’s history. The overall

probability of a positive experience with item 2 is lower than the system’s threshold. However, when

the recommendation is customized, item 2 will be recommended to the user who had a positive

experience with item 1. This is captured by the second inequality −w0
w1
≤ p(1,1)

p(1,0)
. However, this

recommendation is harmful to the user as the probability of a positive experience to the user is still

lower than the threshold that is optimal for the user, i.e., −v0v1 >
p(1,1)
p(1,0)

. The second bullet point can

also be interpreted using similar reasoning.

3.5 Value of an additional user

Thus far we have focused on the asymptotic value that a recommender system creates. In this

section, we study the value from finite data to study how a marginal data point (i.e. on another

user) adds value to other users. Contrary to the asymptotic value, the value from finite data varies

depending on the estimator that a recommender system adopts as different consistent estimators

can induce different predictions from finite data. Thus, we impose a minimal structure that a

consistent estimator should satisfy, and study the value from marginal data and how it behaves as

the system accumulates more data as it adds users.

Bajari et al. (2019) and Acemoglu et al. (2021) show theoretically that prediction error decreases

with a diminishing rate with respect to the size of the data used in prediction. In our benchmark

setting we are able to find a similar result but for user surplus, which we find is monotone, with

its increment diminishing in the size of accumulated data. We will briefly discuss how the learning

curve can be convex or S-shaped in Section 6. These findings, on whether data is sub-additive

or super-additive, have implications for different market outcomes as studied in Gu et al. (2021),

Hagiu and Wright (2021) and Ichihashi (2020b).

To keep the analysis as simple as possible, we consider the case with only two items when

(v1, v0) = (1,−1), and then look at the choice problem of the target user when the platform has

learned the correlation structure from the previous N − 1 users and the target user’s experience

with the first item. Under this simplification, the system elicits the target user’s preference from

her ratings of the first item (i = 1) and makes a prediction about her experience with the target

item (i = 2).

Let the data X be summarized by y = (y(1,1), y(1,0), y(0,1), y(1,1)). Suppose yr records the occur-

rences of outcome r ∈ R = {(1, 1), (1, 0), (0, 1), (0, 0)} that appear in X. Suppose the target user

has a positive experience with item 1 and there are N1 previous users who had the same experience

as the user with item 1. The same analysis applies in the case in which the user has a negative
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experience with item 1. The true but unknown probability of a positive experience with item 2 is
p(1,1)

p(1,1)+p(1,0)
, which we denote by s. Under this setup, the target user’s history can be denoted by

1 ∈ R′ = {1, 0}. We focus on the recommender systems that satisfy the following condition.

Definition 5 A recommender system is said to be unbiased if the target item is recommended to

history r′ target user if and only if y(r′,1) ≥ y(r′,0).

In any unbiased recommender system, the target item is recommended to try if and only if the

target user is more likely to have a positive experience with the target item in the sense that the

previous users who share the same history with the target item have reported more positive ratings

than negative ratings.

For a given s, according to this recommendation rule, the item is recommended to the user with

probability

P [y(1,1) ≥ y(1,0)] =

y(1,1)+y(1,0)∑
k=d(y(1,1)+y(1,0))/2e

(
y(1,1) + y(1,0)

k

)
sk(1− s)y(1,1)+y(1,0)−k, (7)

where dxe denotes the ceiling function, i.e., the least integer greater than or equal to x. To avoid

a mathematical complexity that is involved with binomial probability and the ceiling function,

assume that y(1,1) + y(1,0) is only an odd number by considering the case of y(1,1) + y(1,0) = 2m− 1,

m ∈ N. The same results apply to the even-number cases. Let v(m|s) denote the expected value

of the target user in terms of the number of previous users 2m − 1 and the true (and unknown)

conditional probability of a positive experience s. Formally, we have

v(m|s) = sP [y(1,1) ≥ y(1,0)]− (1− s)P [y(1,1) ≥ y(1,0)].

Note that v(·|·) can take a negative value. For example, for any s ∈ (0, 12), it is possible that the

occurrences of y(1,1) exceed that of y(1,0). Therefore, the possibility of a wrong recommendation

always exists even though the platform is committed to giving the recommendation that it expects

to be best for the target user. Although the addition of a data point from an additional user always

leads to a more informative data structure, it can be shown that the incremental value diminishes.

The following results characterize the nature of data under the recommender system.

Proposition 5 Let v(m|s) denote the value to the target user and ∆v(m|s) be the marginal value

that the target user contributes to the next user.

1. The value is positive and increases in the number of previous users. i.e., v(m|s) increases in

m, ∀s.

2. The marginal value diminishes. i.e., ∆v(m|s) decreases in m, ∀s.
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Note that the increment is strictly positive for any s 6= 1
2 . As a result, when a user is uncertain

about s, she expects a strictly higher payoff from a platform using a recommender system with

a larger dataset unless she holds a degenerate prior belief (i.e. s = 1
2). An immediate corollary

follows from this fact.

Corollary 5 Suppose the target user believes s is distributed according to a CDF S, which does

not have a mass of one at s = 1
2 . Then Es[v(m+ 1|s)] > Es[v(m|s)], ∀m.

Corollary 5 says that, except for a degenerate case, the recommender system generates a positive

data network effect in which users’ expected utility increases as more other users are added.

The reason behind the submodularity of data has a clear connection to how a Bayesian posterior

is formulated. A Bayesian posterior is a compromise between a prior and data. As we increase

the data size, the relative contribution of each data point to the posterior becomes smaller. Thus,

any particular data point that has the same history as the target user’s becomes less influential in

forming the expected utility of the target user.

4 Bayesian model for a recommender system

In order to quantify the results implied by our theory with data, in this section we construct a

Bayesian model of a recommender system that learns the correlation structure and makes cus-

tomized predictions based on the target user’s history. It is a consistent recommender system and

satisfies the recommendation rule that we imposed in Section 3.5 provided the prior distribution is

properly chosen. We use this Bayesian model in Section 5 for our counterfactual experiments. As

before, we focus on complete data, although we do not require that the target user has given ratings

for all the C items. The extension of our Bayesian recommender system to handle incomplete data

is explained in Online Appendix A.

4.1 Bayesian model of a recommender system

Let C + 1 be the target item. The platform’s objective is to learn pC+1, the correlation structure,

so as to make predictions about a target user’s preference for items that the user has not yet tried.

Again, to save notation, we write p for pC+1. We use Bayesian parametric inference to model the

learning. To specify the Bayesian model, we first set our prior distribution for p, and then update

the prior distribution using the collected data. The posterior distribution for p immediately follows

from the prior distribution and the likelihood function that generates the data. From the posterior

distribution, we take our point estimator as the posterior mean.

Bayesian learning: The prior

Initially, p is known only to the extent of a prior belief, which captures the platform’s knowledge

about p. This includes any information about the items’ intrinsic values and relationships between
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the values of items. It is expressed in our model through the Dirichlet distribution:

q0 = (q0r )r∈R ∼ Dir(α0),

where α0 = (α0
r)r∈R represents the concentration parameters. Note q0 itself is a random vector,

and there is no restriction imposed on the concentration parameters α0
r , r ∈ R as long as they

are positive scalars. The Dirichlet distribution is a generalization of the Beta distribution to the

multivariate case. The shape of the distribution is determined by the concentration parameters α0,

and different concentration parameters can be used to accommodate different prior information.

For example, αr = 1, ∀r ∈ R, corresponds to the uniform prior. Jeffreys prior, a commonly used

non-informative prior, also can be accommodated by letting αr = 1
2 , ∀r ∈ R. In our various

examples throughout the paper, and in the empirical setting of Section 5, we focus on cases in

which all items have binary ratings. In such cases, the prior distribution is represented as

q0 = (q0(1,··· ,1), · · · , q
0
(0,··· ,0)) ∼ Dir(α

0
(1,··· ,1), · · · , α

0
(0,··· ,0)).

The Dirichlet distribution is a widely accepted way to describe prior knowledge in settings like

this. Most importantly from our perspective, it is a conjugate prior for the multinomial distribution

(see Diaconis et al. (1979)), so it is analytically and computationally tractable. Second, from a

theoretical standpoint, the neutrality property of the Dirichlet distribution has an implication for

the reliability of user-generated data. As shown in Lee (2021), when the platform uses the Dirichlet

distribution as a prior to learn the correlation structure, users cannot manipulate the platform’s

prediction system by providing false information about their past experiences. Other justifications

for the selection of the Dirichlet prior can also be found in Mosimann (1962), Rothschild (1974),

Böge and Möcks (1986) and Diniz et al. (2016).

Bayesian learning: Data and likelihood function

For X, let X
′
refer to the collection of all ratings excluding user 1’s history and other items irrelevant

in making a prediction, i.e., item C+2 to item C+I. That is, X
′

is the (C+1)×(N−1) submatrix

of X which is obtained from X by removing the C+ 2 to C+ I rows of the first column. When the

condition for complete data is satisfied, data from the N −1 previous users is simply a collection of

outcomes each of which is independently generated according to the unknown probability vector p.

We use yr to denote the occurrences of r in X
′
. Let y = (yr)r∈R. The likelihood function associated

with the data is

y|q0 ∼Multinomial(N − 1, q0).
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Bayesian learning: The posterior

Finally, it can be verified that the posterior distribution induced from the prior distribution and

the likelihood is a Dirichlet distribution with a concentration parameter y + α0:

q1
d
= q0|X ′ ∼ Dir(y + α0).

In our main example, Table 1, we have X
′

= {(1, 1), (0, 0), (1, 1), (1, 0)} and y = (2, 1, 0, 1). Further-

more, if we take the uniform prior distribution, the resulting posterior distribution is Dir(3, 2, 1, 2).

4.2 Predicting what users like

From the posterior in the previous section, we are now ready to make a prediction, which we define

as the conditional probability of the target user liking the target item i given the data. Let x denote

the target user’s ratings of items, i.e., x is the first column of X. For x, we define two disjoint sets

R+
i (x) and R−i (x) as follows:

R+
i (x) ={r ∈ R|ri = 1 and rk = xk, ∀k s.t. xk 6= ∅}

R−i (x) ={r ∈ R|ri = 0 and rk = xk, ∀k s.t. xk 6= ∅}.

That is, R+
i (x) is the subset of R that satisfies (1) the rating of the target item i is positive, and

(2) the rating of the conditioning item k, k 6= i, is the same as the target user’s rating of the

conditioning item k if the user has left a rating on it. The sets are specific to the target user’s

ratings and also to the target item. For example, in the case of Table 1, when user 1 is the target

user, we have

R+
2 ((1, ∅)) = {(1, 1)} and R−2 ((1, ∅)) = {(1, 0)}.

On the other hand, if a new target user, user 6, participates in the platform and when item 1 is

the target item, the sets now become

R+
1 ((∅, ∅)) = {(1, 1), (1, 0)} and R−1 ((∅, ∅)) = {(0, 1), (0, 0)}.

Let the posterior belief q1 follow Dir(α1) after learning from data X
′
, where α1 = y + α0 and

y is derived from the data X
′
. The true probability that the target user likes the target item i is

denoted by

zi(x) =

∑
r∈R+

i (x) pr∑
r∈R+

i (x)∪R−i (x) pr
.

Let Yi be a random variable which takes value 1 with probability zi(x) and 0 otherwise (i.e.

Yi ∼ Bernoulli(zi(x))). Using q1 and x, we define the pointwise estimator ẑNi (x) of zi(x) by
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its conditional probability

ẑNi (x) ≡ P [Xi = 1|X] =
P [Yi = 1, x|X ′ ]

P [x|X ′ ]
.

We denote the associated posterior predictive distribution by ẑNi (x). Note that an equivalent

representation for the estimator is the expected value of Yi conditional on X.

The following proposition characterizes the estimator and the predictive distribution for the

parameters, showing they have concise expressions in terms of the concentration parameters. More-

over, the process of Bayesian learning and prediction is computationally efficient, in the sense that

the new information can be updated by counting.

Proposition 6 With complete data, the recommender system implies:

1. The probability of the target user liking item i is

ẑNi (x) =

∑
r∈R+

i (x) α
1
r∑

r∈R+
i (x)∪R−i (x) α

1
r

.

2. The associated distribution for the target user liking item i is

ẑNi (x) ∼ Beta
( ∑
r∈R+

i (x)

α1
r ,

∑
r∈R−i (x)

α1
r

)
.

3. For any parameter α0 for the prior distribution and for all x, ẑNi (x)→ zi(x), in mean-square.

Hence, ẑNi (x)→ zi(x).

The proposition implies asymptotic learning occurs in our model, so that the prediction becomes

more and more precise as we use more data. The Bayesian approach we present is consistent and

robust in the sense that the predictions converge to the true probabilities regardless of the choice of

the prior distribution within the Dirichlet family. Furthermore, for properly chosen concentration

parameters α0, such as parameters of the uniform prior or the Jefferey prior, they also satisfy the

unbiasedness condition presented in Definition 5.

The Bayesian model we propose can immediately accommodate generic recommendations. A

generic recommendation ignores the ratings left by the target user when making a prediction, even

if the target user has left some ratings on items other than the target item. That is, the system

takes x = ∅ in processing the prediction. Denote by ẑGi , the generic prediction, i.e.,

ẑGi =

∑
r∈R+

i (∅) α
1
r∑

r∈R α
1
r

.
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As mentioned previously, the generic recommendation is closely related to the average rating

mechanism that displays average ratings to users. Let x̂ARi denote a prediction that the average

rating mechanism provides. When the data from the previous users can be summarized by a

multinomial outcome y, it is defined as

ẑARi =

∑
r∈R+

i (∅) yr

N − 1
.

The prediction mechanism we propose is general in the sense that ẑARi can be obtained from an

affine transformation of ẑGi . Formally, we can show the following result:

Proposition 7 1. For any data X, ẑARi can be recovered from ẑGi via an affine transformation.

2. ẑGi and ẑARi are asymptotically equivalent.

They are asymptotically equivalent in the sense that the two estimators converge to each other

as the recommender systems accumulate more data about the target item. The two approaches

differ only by terms that are determined by the selection of the prior parameter, α0. To see this,

we can rewrite ẑGi as

ẑGi =

∑
r∈R+

i (∅) yr +
∑

r∈R+
i (∅) α

0
r

N − 1 +
∑

r∈R α
0
r

.

The two estimates are related according to the following equation:

ẑGi =

∑
r∈R α

0
r∑

r∈R α
0
r +

∑
r∈R yr︸ ︷︷ ︸

weights on prior

∑
r∈R+

i (∅) α
0
r∑

r∈R α
0
r︸ ︷︷ ︸

prior point estimate

+

∑
r∈R yr∑

r∈R α
0
r +

∑
r∈R yr︸ ︷︷ ︸

weights on observations

ẑARi . (8)

From (8), it can be easily checked that the two estimates will be very similar when we have a

reasonable amount of data. In a small sample situation, the difference between the two estimates

remains small if we use a flat or uninformative prior.

4.3 Example

To illustrate how the recommender system works, we revisit the example in Table 1. We make

predictions for user 1 using the Bayesian recommender system and the generic recommender system.

The set of outcomes in this example is given by R = {(1, 1), (1, 0), (0, 1), (0, 0)}. Recall we have

X
′

= {(1, 1), (0, 0), (1, 1), (1, 0)} and x = {1}. Consider the prediction of whether the target user

will like item 2. The resulting posterior distribution is

q1 ∼ Dir(α0
(1,1) + 2, α0

(1,0) + 1, α0
(0,1), α

0
(0,0) + 1).

27



Here, since we have x = {1}, R+
2 (x) = {(1, 1)} and R−2 (x) = {(1, 0)}. Thus, the prediction can be

calculated as

ẑ52(1) =
α0
(1,1) + 2

α0
(1,1) + 2 + α0

(1,0) + 1
.

For example, if we assume the uniform prior for the initial Dirichlet distribution, we have ẑ52 = 3
5 .

On the other hand, under the generic recommender system, we have x = {∅}.

ẑG2 =
α0
(1,1) + 2 + α0

(0,1)

α0
(1,1) + 2 + α0

(1,0) + 1 + α0
(0,1) + α0

(0,0) + 1
=

1

2
.

Lastly, under the average rating mechanism, it can be easily shown that ẑAR2 = 1
2 .

5 Evidence from data

In this section we estimate the value a recommender system creates and provide its decomposi-

tion and marginal value according to our theoretical findings using the Jester dataset released by

AUTOLAB.12

The Jester dataset contains anonymous ratings of 100 jokes from 73,421 users, collected over

the period from April 1999 to May 2003. Participants choose their ratings via a rating bar over the

interval [−10, 10]. The dataset contains their recorded ratings, which are rounded to two decimal

places. To fit the data into our environment, we convert the data to a binary rating: positive

ratings and negative ratings.13 We call this the Jester binary dataset. Not all users rate all jokes,

with around 40% of the ratings out of the total 7,342,100 being missing. Although the sparsity is

40%, there are 14,116 users who have completed rating on all 100 jokes.

Throughout the empirical analysis, we assume our theoretical framework holds, and take the

Bayesian learning and prediction model in the previous section as the estimator of the recommender

system.14 There are three key parameters, C, I, τ , which define such a recommender system (recall

these are the number of target items, the threshold, and the number of non-target items). As a

benchmark setting, we take M = 10 and assume C = 9 and I = 1 with τ = 1
2 , as well as a fixed

way of running simulations, as we will now explain.

For a given counterfactual experiment, we run 1,000 simulations. In each simulation, we ran-

domly select 10,000 users (the training group) from the 14,116 users who have completed rating on

all 100 jokes. We then randomly select another 10,000 users (the test group) from the remaining

63,421 users. In this benchmark setting, we assume I = 1 and choose nine conditioning items (i.e.

12Goldberg et al. (2001)
13There are 4,116 zero ratings and they are converted to negative ratings, reflecting that out of the total of 4,136,360

ratings, 2,418,393 are positive ratings and 1,717,967 are negative ratings, with a zero rating being below both the
average and the median rating.

14We will use the uniform distribution for the prior distribution.
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jokes) at random, i.e., C = 9.15 The Bayesian mechanism learns the correlation structure about

the ten items using the training group’s data. As we will see, ten items turns out to be sufficient

to learn the value that the recommender system creates.16 After learning the correlation structure

from the training group, we make predictions about the test group’s experiences with the target

item. We assume (v1, v0) = (1,−1) and apply the user-optimal threshold τu = 1
2 . Thus, a try-

recommendation is made to the target user only if the target item is more likely to induce a positive

experience with the user (i.e., if the predicted probability of a positive rating is above 1/2). The

simulation assumes the recommended item is tried. And we take the user’s actual rating (either

one or negative one) as the resulting utility to the user. If the predicted rating is strictly below 1/2,

the item is assumed to be not recommended to the user and so not tried. The resulting utility is

recorded as zero in this case. We consider 1,000 such simulations, each time with a different random

selection of the training group and test group, and a different random selection of the target item

and nine other items.

Two remarks are in order in regards to the target user’s data for this benchmark approach.

First, for any C > 0, since target users often do not have ratings for all C items, the actual degree

of customization in effect is smaller than C. Second, when a target user does not have a rating on

the recommended item, we ignore that user in calculating the average of users’ utility. To examine

any selection bias that might arise from this screening, we have run simulations using the complete

subset of the whole data and obtained essentially the same results. The results from a complete

dataset is presented in the Online Appendix C.

5.1 Value of data and its decomposition: Evidence

To quantify our theoretical results from Section 3.2, we first investigate how data increases user

welfare through the recommender system for the Jester binary dataset.

Our theoretical findings imply that recommender systems add value via three key functions:

customization, selection and screening. To measure the value created from each of the functions,

we run the benchmark case but vary C, I and τ , each from their benchmark levels (C = 9, I =

1, τ = 1
2). To do so we consider the alternative values C = 0, I = 3 and τ = 0, respectively, and

consider the set of all combinations of parameters implied by these alternatives: C̄ × Ī × τ̄ , where

we take C̄ = {0, 9}, Ī = {1, 3} and τ̄ = {0, 12}. Other things equal, changes in C, I and τ will

respectively capture the value created from customization, selection and screening. We refer to a

recommendation under C = 0 as a generic recommendation (generic RS) and that under C = 9 as

a customized recommendation (customized RS).

Table 2 presents the estimated average utility that users receive from recommender systems

15All the random samplings within each simulation are done without replacement.
16According to our theoretical results in Section 3.4, the user surplus (weakly) increases in the number of items

that the prediction mechanism conditions on. However, more items require more data points to ensure asymptotic
learning. With our dataset, it can be checked that ten items is sufficient to approximate maximal learning.
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Average Utility Standard Error Min / Max

I = 1, τ = 0
Generic RS (C = 0) 0.148 (0.0077) -0.567/0.616

Customized RS (C = 9) 0.148 (0.0077) -0.567/0.616

I = 1, τ = 1/2
Generic RS 0.193 (0.0057) -0.159/0.616

(scr only) Customized RS 0.258 (0.0049) -0.051/0.622

I = 3, τ = 0
Generic RS 0.342 (0.0048) -0.284/0.617

(sel only) Customized RS 0.357 (0.0049) -0.295/0.651

I = 3, τ = 1/2
Generic RS 0.344 (0.0046) -0.133/0.617

(scr and sel) Customized RS 0.371 (0.0042) -0.013/0.634

Table 2: User surplus from recommender systems
scr: screening, sel: selection

Standard Error=sample standard deviation/
√
number of simulations

with different parameter settings. Without selection and screening, i.e., I = 1 and τ = 0, the

simulation results show that the average utility of users is 0.148 without any customization. This

corresponds to the utility users should expect when there is no recommender system available and

instead they try each of the randomly selected items. On top of this baseline value, screening

(τ = 1/2) adds 0.045 additional average utility when there is no customization (C = 0) and 0.110

under customization (C = 9). This is for the baseline case without selection (I = 1). This shows,

without selection, out of the total 0.110 increase in average utility from learning, generic learning

contributes 0.045 to the increase in average utility, where as 0.065 is created from customization,

suggesting more value comes from within-user customization than from across-user learning about

the target item.17 On the other hand, adding selection without screening (so focusing on the

case with τ = 0 but comparing I = 3 with I = 0), adds 0.194 without customization and 0.209

with customization. The additional value from customization is less pronounced when there are

multiple jokes to select from. This reflects that in the jokes database, even with a small number of

jokes, there is a high likelihood of there being at least one joke which most people like.18 This is

consistent with our Proposition 3, since items that have positive (or negative) ratings regardless of

history cannot add significant amounts of value through customization. The recommender system

adds even more value to users when selection, screening and customization coexist. When I = 3,

τ = 1
2 , the consistent recommender system adds 0.223 more value to users compare to the situation

without a recommender system.

To illustrate Corollary 1 with our data, we analyze the average utility of users who have multi-

17However, note that customization creates no value unless it is combined with across-user learning since without
data from multiple users there is no way to learn the correlation structure required for customization. So in this
sense, the value created from customization augments the value created from having data on many users and can
really be thought of as value created from combining customization with across-user learning.

18More than 50% of all 100 jokes have above 60% positive ratings.
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unit demand. In this case, under I = 3, we consider two cases — that the recommender system

recommends at most two items or that it recommends all items above the threshold. These corre-

spond to the situation that users have multi-unit demand for two items, or in the latter case, for all

three items. As we normalize utility from not consuming an item to zero, each user’s final utility is

an average of their ratings (-1 or 1) from the recommended items and zero from the outside option

when they are not recommended any item. The resulting average utility is depicted in Table 3.

Overall, the resulting average utility behaves similarly to the case in which users are only interested

in consuming a single item, with customization adding positive value to users, consistent with the

corresponding theoretical finding.

Average Utility Standard Error min / max

I = 3, τ = 1/2
Generic RS 0.262 (0.0046) -0.104/0.584

up to 2 units Customized RS 0.308 (0.0039) -0.001/0.598

I = 3, τ = 1/2
Generic RS 0.257 (0.0051) -0.394/0.584

up to 3 units Customized RS 0.259 (0.0052) -0.396/0.580

Table 3: User surplus with multi-unit demand

5.2 Marginal value of learning

Our empirical findings in the above section confirm that each of the three functions of a recom-

mender system add significant value to users. In this section we evaluate the impact of marginal

changes in each of the three functions. Furthermore, we assess the marginal value of having data

from an additional user.

Marginal value of customization

Proposition 3 predicts additional customization increases user welfare under the user-optimal

threshold level. To measure how much user surplus increases from additional customization, we run

simulations following our benchmark setting (I = 1, τ = 1
2) but changing the degree of customiza-

tion C from one to nine. Thus, for a given simulation with 10,000 training group users, 10,000

test group users, one target item and nine conditioning items, all randomly drawn, we first let the

Bayesian recommender system learn from the training group users’ ratings on the target item only,

and make predictions about the test group users. This corresponds to the situation in which zero

degrees of customization have taken place (C = 0 case). Next, we increase C by one (C = 1), letting

the system learn from the same training group user data about the two-item correlation structure

associated with the target item and one of the items from the nine-item selection before it makes

customized predictions about the test group. We repeat this until C = 9. In short, we increase the
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degree of customization in recommendations from zero to nine and compare the resulting average

utilities, keeping everything else fixed according to the benchmark setting. The final user utility is

calculated as the average utility over 1,000 such simulations.

Figure 3 summarizes the average utility of users from different degrees of customization and the

corresponding 95% confidence intervals from running the simulation 1,000 times. For comparison

purposes, the average utility users receive in the absence of a recommender system is also presented

in the plot (“w/o RS” — the average utility under I = 1 and τ = 0).
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Figure 3: Average utility for different degrees of customization

Consistent with our theoretical predictions in Section 3.4, the user value increases as the recom-

mender system provides more customized predictions. It is also observed that the average utility

exhibits a diminishing return to customization when averaged over the 1,000 simulations. However,

for any particular set of items, we know from Section 3.4, that the increment can sometimes in-

crease rather than decrease in the degree of customization. We confirmed this is true in our data by

considering a single draw of ten items and inspecting how the increment of average utility changes

in the degree of customization. The details are presented in Online Appendix D.

Marginal value of selection

We turn to measuring the marginal value to users of additional target items. As predicted in

Proposition 1, wider availability of selection makes it easier for the system to find a better item

for users. To quantify the marginal value, based on our benchmark setting, we change the number
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of target items (I) from one to fifteen, and evaluate the resulting average utility of users. Figure

4 depicts the average utility of users in terms of I under C = 9 and τ = 1
2 and the corresponding

95% confidence intervals.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of

target items
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0.4

0.5

Average

utility

Figure 4: Average utility in terms of the number of target items

Figure 4 also shows that the marginal benefit of having an additional target item to choose

from diminishes as more items become available for selection. This is related to the diminishing

marginal increment property of the mean of the largest order statistic. When I items are drawn

at random according to a fixed distribution, it can be shown that the mean of the largest order

statistic increases in the number of items, I, at a diminishing rate. Although we do not explicitly

assume any distribution behind the item’s selections, we believe a similar logic also applies to our

case.

Marginal value of screening

In the model, the recommender system adjusts its level of screening by changing the threshold,

which in our framework is the only channel through which a possible misalignment of interest

between the platform and the users can arise. We explore what happens when the platform-optimal

threshold differs from that which is best for a user (τp 6= τu) at each degree of customization. We

evaluate the value to users under different platform-optimal thresholds, τp = 0.1, 0.2, · · · , 0.9. For

all other parameters, we stick to our benchmark setting. Note a low value of τp could capture a

platform that is biased towards usage because it is compensated based on users trying the item

rather than whether they like it or not, while a high value of τp could capture an overly conservative
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platform that does not want the user to try the item unless it is very confident the user will like it.

For each threshold τp, we repeat 1,000 simulations exactly as in our benchmark setting, changing

the degree of customization from zero to nine. We find that the reduction in average utility associ-

ated with the misalignment becomes more significant and the customization becomes less valuable

as the level of misalignment increases. The simulation results are summarized in Figure 5.19 At the

maximum degree of customization we test, C = 9, the average utility is 0.148, 0.191, 0.204, 0.031

when τp = 0.1, 0.3, 0.7, 0.9, which are 0.110, 0.057, 0.053, 0.221 lower than the average utility

the optimal threshold τp = 0.5 creates. Overall, we observe around 10.9% of reduction in average

utility if we lower τp by 0.1 from the optimal level τp = 0.5. On the other hand, if we increase τp

by the same margin, there is around a 22.0% reduction in average utility.20
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Figure 5: Average utility under different threshold levels τp

Additionally, a higher degree in customization leads to a higher average utility of users, as

can be seen from the increasing nature of the curves in Figure 5. However, the increased utility

from customization is less when the platform’s threshold is misaligned with users. Especially,

when τp < 1/2, the gain from customization is much more limited due to the misalignment:

Customization contributes 0.06 to the increase in average utility when τp = 1/2, whereas it only

contributes 0.003 to the increase when τp = 0.1 and 0.048 when τp = 0.3. Although our theoretical

analysis suggests that when τp is far away from the user-optimal level of 1/2 it is possible for

customization to harm consumers, that situation doesn’t arise in our data.

19To ensure the figure is readable, the statistical significance of the simulation results is relegated to Online Appendix
E.

20The findings that the average utility stays positive even with τp = 0.1 and that there is a larger utility loss from
a high threshold than a low threshold reflect that the overall average utility from our rating data is positive. Since
we normalize the outside option of not trying a joke to zero, the average utility from trying all of any set of jokes
recommended will tend to be strictly positive.
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Marginal value of additional users

We study how the average utility of users changes as the number of previous users that the platform

can learn from increases. For one simulation, we start as usual by randomly selecting the training

group (10,000 users) and test group (10,000 users) and ten items according to our benchmark set-

ting, i.e., (C, I, τ) = (9, 1, 1/2). Then for each given simulation, we run 1,000 rounds of predictions

as follows. We start by taking only one user from the training group, to form the training set. We

run our usual prediction exercise but with the training group replaced by this training set. In each

subsequent round, we pick ten new users at random from the training group and add that user data

to the existing training set to form a larger training set. We repeat our usual prediction exercise

with the corresponding training set in each round. This is repeated until all 10,000 users have been

added. This way we can measure how the size of the training set affects the resulting user welfare

from the test group. Note as usual, the test group and the set of ten items remain fixed for a given

simulation. All other aspects remain the same as in our benchmark setting, and we run 1,000 such

simulations.

Figure 6 depicts average user utility in terms of the number of previous user data points, with

the corresponding 95% confidence interval being represented by the shaded area. After all 10,000

users’ data has been used, the average target user utility is around 0.260, which is around 78.87%

higher than the average target user utility when no learning has taken place (i.e., when only one

user’s data has been used to train the model). Furthermore, it is clear that the marginal increment

in the average user utility diminishes as we increase the data size as is predicted in Section 3.5.
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Figure 6: Average utility in terms of number of previous users

5.3 Data complementarity

Lastly, we assess whether the number of previous users and the degree of customization are com-

plements or substitutes in creating user value. We use our benchmark setting with (I, τ) = (1, 1/2)

to run 1,000 simulations where we adjust the degree of customization C and the number of users
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used in the training group N from their usual values of C = 9 and N = 10, 000. Let V (C,N) be

the average utility generated by the Bayesian recommender system that learns from N previous

users’ data about C + 1 number of items. To investigate how the two relevant dimensions interact,

we define and measure the following discrete version of the cross partial of V with respect to C and

N :

∆C,N =
(
V (C + δC , N + δN )− V (C + δC , N)

)
−
(
V (C,N + δN )− V (C,N)

)
.

Here δC and δN are increments in the degree of customization and in the number of previous users.

Depending on whether the cross partial difference is positive or negative, it can be evidence that

the two dimensions are complements or substitutes. For instance, if ∆C,N > 0, this means that

over the relevant range, using more items to customize predictions on makes having additional

user data even more valuable. Moreover, the magnitude of the cross effects at each point (C,N)

can be captured by measuring the absolute value of ∆C,N . In our analysis, we take δC = 1 and

δN = 500. Figure 4 presents the value of our measure of the cross-partial derivative ∆C,N for

C ∈ {0, 1, · · · , 9} and N ∈ {0, 500, 1000, · · · , 10000}. Given we take V (C,N) as the average utility

for each combination of (C,N), the significance level is not presented in this figure. The area

depicted in dark blue represents combinations of (C,N) which generate positive values of the cross-

partial derivative (above 0.0005), so in which the two dimensions are complements. On the other

hand, the area in white represents combinations of (C,N) which generate negative values of the

cross-partial derivative (below −0.0005), so in which the two dimensions are substitutes. Lastly,

the area with light gray represents combinations of (C,N) around zero, within the error bound of

(−0.0005, 0.0005).

The two dimensions exhibit strong complementarity when both the degree of customization

and number of users in the training group are low, as shown by the peak in Figure 7 when C

and N are both low. Adding data from additional users provides more value when there is more

customization starting from the point where both are relatively low. On the other hand, when

the degree of customization is high and the training group size is very small, the two dimensions

exhibit substitutability. More specifically, at N = 0, the cross marginal effect is ∆6,0 = −0.0011,

∆7,0 = −0.0026, and ∆8,0 = −0.0035.21 This reflects the lack of degrees of freedom when N is

small and C is large. When C increases, the number of parameters in the correlation structure

increases, and hence, the recommender system requires a larger number of users to achieve maximal

learning (although the average utility achievable from maximal learning is greater). Therefore,

when the amount of users is insufficient, a moderate degree of customization can induce higher

average utility than a high degree of customization. In fact, when N = 500, the average utility is

maximized at C = 6. As we increase N , the optimal C also increases, until the average utility is

eventually maximized by C = 9 for all N ≥ 4000. Finally, we note that regardless of the degree of

21A similar result holds if we increase the size of the training set from N = 1 to N = 500.
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Figure 7: Complementarity between the two dimensions

customization, the cross effects largely disappear once there are enough users to learn from. In our

exercise, once N ≥ 5000, the magnitude of any cross marginal effect is less than 0.0005.

6 Extensions

This section briefly explores three extensions of our baseline model. In Section 6.1 we discuss the

platform’s and users’ exploration motive. In Section 6.2 we provide a micro-foundation for user

behaviors in providing ratings and deciding whether to follow the platform’s recommendation. In

Section 6.3 we explore how the marginal return to data can sometimes be increasing using simulated

data.

6.1 Within-user exploration

Throughout the paper we have ignored the motive the platform and users have to explore. From a

dynamic standpoint, there are two channels by which exploration can potentially take place. First,

although the target item is not suitable for the target user, the platform may want the user to

try the item to improve its predictions for future users. This is closely related to the standard

exploration vs. exploitation issue that is covered in the literature of the multi-armed bandit.22 For

22There is a growing literature on the multi-armed bandit problem in which rewards from the arms are correlated
with each other (Gupta et al. (2019), Pandey et al. (2007) and Srivastava et al. (2015)), which is similar to exploration
in the correlated items setting we are dealing with. However, the optimal policy for a multi-armed bandit with a
general correlation structure, which corresponds to our setting, remains unknown.
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a large part of our theoretical results, we focused on limit results, where across-user exploration

by the platform was not an issue since the platform was already assumed to have learnt the true

correlation structure between items and was only deciding whether to recommend one or more item

to a target user.

However, for certain results including our empirical findings, exploration could provide addi-

tional value from data that we ignored.

The second channel arises because the platform provides a customized recommendation in our

framework. Although the target item is seemingly unattractive to the target user, it is possible

that the user strictly benefits from trying the item if the item has a strong correlation with another

item (or set of items) that the user has not tried yet and would like to learn about. One might

think of a user trying an item that is representative of a new music or movie genre that they have

not tried before and they expect not to like, just so they can be sure they are not missing out on

potentially a lot of other items they could actually enjoy.

Since our main focus was only on whether a target user should try one target item or not,

the findings of the current paper is not affected by this type of exploration. However, because

there is informational externality generated from the target user’s experience with a target item

which might affect subsequent recommendations, it can be of interest to study the optimal order

of recommendation when there are multiple items to try and when users have multi-unit demands.

For this reason, we focus on this second channel and study the exploration issue that arises from

customization, which we believe is new to the literature.

We first consider a two-item platform that has accumulated data from N−1 previous users and

makes recommendations to user N . We assume that the recommendations are user-centric in the

sense that the platform’s threshold aligns with the users. The platform’s decision is two-fold: It

decides which item to recommend first and the threshold level above which this item is recommended

to the user. We call the recommendation policy that recommends the item with the highest myopic

expected payoff first the näıve order. On the other hand, we refer the recommendation threshold

that induces the highest myopic expected payoff as the näıve threshold. When the recommendation

rule takes into account dynamic considerations in recommending the first item, the optimal rule is

referred to as a dynamically optimal policy.

In the Online Appendix F we formally show the following findings: (1) for any two-item plat-

forms, the näıve order is dynamically optimal, and (2) the näıve threshold is not dynamically

optimal unless the second item to be recommended is expected to produce negative utility regard-

less of the experience with the first item. The results hold for any discount factor δ ∈ (0, 1].

The näıve threshold is not dynamically optimal because the threshold does not fully take the

dynamic benefit of within-user exploration into account. Even if the first item is expected to harm

the user to some extent, if the user experience with the first item releases relevant information

about the other item, the first item can be worth trying to get access to the relevant information.

This implies the user’s dynamically optimal threshold can start lower than the näıve threshold when
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the user has more items to try on the platform, and then eventually becomes the näıve threshold

when there are no more items to try. Although it is shown that the näıve order is dynamically

optimal, this no longer has to be true when the platform takes more items into consideration in

making sequential recommendations. In the Online Appendix F we show, by means of an example,

that when there are three items, the näıve order may no longer be dynamically optimal. When a

particular item reveals more relevant information about all other items than does any of the other

items, users are better off by trying the said item even if the expected utility from the item is

strictly less than what they expect to get from some other item.

6.2 Incentive compatibility of user feedback

In our baseline model, we have assumed that the data the platform collects from users is reliable

(i.e., that users give truthful feedback), and that the platform’s recommendations are effective (i.e.,

users follow the recommendations from the platform). However, it is conceivable that sophisti-

cated forward-looking users may be able to strategically distort their feedback to manipulate the

recommender system and, as a result, receive more useful information from it.

Lee (2021) explores this possibility. He shows that the manipulation motive of a user can

sometimes prevail even though the platform is committed to the user-optimal recommendations.

The motivation is stronger when the platform has highly unbalanced data, meaning that, using

our terminology, the number of data points from history r users is significantly larger than those

from history r′ users. As we have shown in Proposition 5, this results in quality differences in

the recommendations that users with different history receive. As a result, history r′ users may

have an incentive to masquerade as history r users to receive higher quality information from

the platform. Although this strategic deception can strictly benefit some users ex-post, we also

show that leaving truthful feedback and subsequently following the recommendation is optimal

for users in expectation, under a wide variety of user beliefs about the item correlation structure,

including uniform priors. Furthermore, it is also shown that the strategic motivation to manipulate

the platform by leaving false feedback and (or) not following recommendations vanishes as the

platform accumulates more data points from users of both histories, and it completely disappears

in the limit. This supports our assumption of truthful feedback in this paper, at least for the

settings where we focus on limit results, which was the case for much of our theoretical analysis.

6.3 The shape of learning curves

Positive but diminishing marginal return to data has been found in the field experiment of Claussen

et al. (2021) and the empirical studies of Bajari et al. (2019) and Schaefer and Sapi (2021). Although

our empirical result using the Jester dataset also exhibits the same property, this is not a property

that will always hold for all data or all payoffs. To illustrate, we generate random ratings over

three items, item 3 being the target item. We consider a situation that the target item is positively
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correlated with item 1 and negatively correlated with item 2.23 We carry out the simulations based

on our benchmark setting that estimate the average utility of users in terms of the number of

data points similar to the last exercise we conducted in Section 5.2, but under different user payoff

structures (v1, v0) and the corresponding user-optimal thresholds.24

Fixing v1 = 1, we take v0 = −1,−3,−5,−7,−10 and estimate the average utility of users.

As summarized in Figure 8, when the disutility from a negative experience outweighs the utility

from a positive experience, the return from an initial period of learning exhibits increasing returns,

and then it eventually diminishes. The S-shaped learning curves in Figure 8, for example in case

v0 = −10, reflect that when recommending the incorrect item induces a very negative outcome

for consumers, the user-optimal threshold ensures that recommendations are not made unless the

platform is very sure of a positive outcome. This leads to no recommendations being made and

zero expected utility until the recommender system has access to enough training data, after which

additional data becomes increasingly valuable for a while before the usual diminishing marginal

return to data property sets in. Such an S-shaped learning curve may be relevant for applications

where the penalty for trying something that users have a bad experience with is very negative, such

as for doctors relying on AI-powered medical imaging for recommending conditions or treatments

(e.g. Behold.ai), or airport security relying on AI-based readings of X-rays of bags for threat

detection (e.g. seeTrue.ai).
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Figure 8: Different shapes of learning curves

23The underlying correlation structure is p = {0.175, 0.075, 0.2475, 0.0025, 0.0025, 0.2475, 0.075, 0.175}.
24To be more precise, we generate 73,412 simulated user data points over three items. In each simulation, which

we run 1,000 times, N training group users and 10,000 test group users are drawn at random. We take C = 2 and
I = 1, meaning that we make predictions about the target item 3 based on the ratings on item 1 and item 2. We
vary N from 1 to 100 to study how learning affects user utility.
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7 Conclusion

In this paper we provide a framework to help understand the value created by a recommender

system, and use it to identify the underlying sources of value creation, both theoretically and

empirically. The value creation process consists of three key elements: history-specific customized

predictions, the selection of the best item, and screening items not suitable for users of each history.

We theoretically explore how each of these elements adds value to users, and empirically confirm that

each of them contributes significantly to the value created. We provide theoretical conditions under

which the data network effect generated from a recommender system is positive but diminishes with

more users, a result we find also holds empirically based on a publicly available dataset containing

over four million anonymous joke ratings from 73,421 users. We show theoretically that the value of

customization, while normally positive, can turn negative if the platform’s interests diverge enough

from the interests of users. While such a divergence does not lower consumer utility when our model

is applied to the jokes dataset, the increase in value from customization becomes negligible when

the divergence of interests is maximal. And from applying our model to the jokes dataset, we find

strong complementarity between the value created by across-user learning and customization when

both the number of users and the degree of customization is low, but that this complementarity

disappears quickly as the system accumulates data from more users.

We view our framework as a first attempt to model how a recommender system based on

collaborative filtering works. There remains much that can be done to build on it. In our extensions

we provided some initial analysis of a few directions for future research. These include allowing the

platform to optimize its threshold for making each of its recommendations taking into account the

future benefits of exploration when it is still learning the correlation structure, and allowing users

to decide whether to give truthful feedback or not. In our main theoretical analysis, we sidestepped

these issues by largely focusing on limit results. Another direction is to use our prediction framework

to say something about how different items should be ranked. Thus, our framework could provide a

useful starting point for analyzing optimal ranking mechanisms that take into account collaborative

filtering. Finally, it would be useful to apply our Bayesian recommender system to other datasets

to quantify the value of data across different environments.

41



References

Acemoglu, D., Dahleh, M. A., Lobel, I., and Ozdaglar, A. (2011). Bayesian learning in social

networks. Review of Economic Studies, 78:1201–1236.

Acemoglu, D., Makhdoumi, A., Malekian, A., and Ozdaglar, A. (2021). Too much data: Price and

inefficiencies in data markets. American Economic Journal: Microeconomics, (Forthcoming).

Aggarwal, C. C. (2016). Knowledge-based recommender systems. In Recommender systems, pages

167–197. Springer.
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A Appendix

A.1 Proof of Proposition 1 and Corollary 3

Proof. We focus on the user’s expected utility evaluated at the limit as N →∞ in the proof. The

same logic can be applied to measure the platform surplus or the social surplus.

Let the user-optimal threshold be τu = −v0
v1−v0 . By the definition of a consistent recommender

system, i is recommended to history r′ user if and only if the following inequality holds:

pi(r′,1)

pir′
≥ max

j∈I

{pj(r′,1)
pjr′

,
−v0

v1 − v0

}
.

Since pi(r′,1) + pi(r′,0) = pir′ = pjr′ , ∀i, j ∈ I, the condition is equivalent to the following expressions

pi(r′,1)

pir′
≥ max

j∈I

{pj(r′,1)
pjr′

,
−v0

v1 − v0

}
⇔ (v1 − v0)pi(r′,1) ≥ max

j∈I

{
(v1 − v0)pj(r′,1), − v0(p

i
(r′,1) + pi(r′,0))

}
⇔ v1p

i
(r′,1) + v0p

i
(r′,0) ≥ max

j∈I

{
v1p

j
(r′,1) + v0p

j
(r′,0), 0

}
.

Since this holds for any r′ ∈ R′ and r′ happens with probability pir′ , ∀i ∈ I, the result in Proposition

1 follows immediately.

Similarly, for a general threshold level τp, i is recommended to a history r′ user if and only if

pi(r′,1)

pir′
≥ max

j∈I

{pj(r′,1)
pjr′

, τp
}
.

An equivalent representation of the above condition is

v1p
i
(r′,1) + v0p

i
(r′,0) ≥ max

j∈I

{
v1p

j
(r′,1) + v0p

j
(r′,0), pr′(τv1 + (1− τ)v0)

}
.

Again, since history r′ happens with probability pr′ , we have the expression in the corollary.

A.2 Proof of Corollary 2

Proof. Consider the following expression from (5):

p(r′,0)1
{

(1− τ)p(r′,1) ≥ τp(r′,0)
}

+ p(r′,1)1
{

(1− τ)p(r′,1) < τp(r′,0)
}
.
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Regardless of r′, the expression is minimized at τ = 1
2 . Thus, the error bound in (5) is minimized

at τu(r′) = 1
2 . Taking τu(r′) = 1

2 , the expression (5) is equivalent to

∑
r′∈R′

pr′

(
p(r′,0)

pr′
1
{
p(r′,1) ≥ p(r′,0)

}
+
p(r′,1)

pr′
1
{
p(r′,1) < p(r′,0)

})
=
∑
r′∈R′

p(r′,0)1
{
p(r′,1) ≥ p(r′,0)

}
+ p(r′,1)1

{
p(r′,1) < p(r′,0)

}
=
∑
r′∈R′

min{p(r′,1), p(r′,0)},

which completes the proof.

A.3 Proof of Proposition 2

Proof. For each history of a target user r′, we construct a set of I correlation structures q = {qi}i∈I

under which an extra degree in customization strictly hurts the target user. Since the proof is done

by construction, it is without loss of generality to assume I = 1. For any cases with I > 1, we can

simply let qj , j 6= C + I = M , satisfies the following inequality and focus on qM only:

zj(r
′) =

qj(r′,1)

qr′
< τ(r′), ∀j 6= M and ∀r′ ∈ R′.

Let I = 1 and τ 6= τu, where τ is the threshold level the system adopts. Similar to the

construction of R′, we denote the set of all outcomes that can be generated by the first C − 1

conditioning items by R′′. Similarly, (r′′, k, 1) and (r′′, k, 0) represents the positive and negative

user experience with the target item of a history (r′′, k) user, k ∈ {1, · · · , nC}.
We will show that for any τ 6= τu, there exists qM such that the target user with history r′′ ∈ R′′

receive strictly lower utility when the recommendation is customized based on C conditioning items

and the target item than when it is customized based on first C − 1 conditioning items and the

target item. By an induction argument, this will prove the existence of a correlation structure that

users are strictly worse off from an extra degree in customization.

Firstly, if τ < τu, then consider the following correlation structure qM . For each r′′ ∈ R′′ and

k ∈ {1, · · · , nC}, the following equalities and inequality hold:
qM
(r′′,k,1)
qM
(r′′,k)

= τ if k 6= nC

qM
(r′′,k,1)
qM
(r′′,k)

< τ if k = nC .

Thus, we have

∑
k∈{1,··· ,nC}

qM
(r′′,k,1)∑

k∈{1,··· ,nC}
qM
(r′′,k)

< τ . Under this correlation structure, when the recommendation

is fully customized, item M is recommended to all users except the history (r′′, nC) user, whereas

when the system omits conditioning item C in making recommendations, no user is recommended
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to try item M .

The user’s utility under fully customized recommendations can be represented as follows using

Lemma 1:

∑
r′′∈R′′

∑
k∈{1,··· ,nC}

qM(r′′,k)1

{qM(r′′,k,1)
qM(r′′,k)

≥ τ
}(

v1
qM(r′′,k,1)

qM(r′′,k)
+ v0

qM(r′′,k,0)

qM(r′′,k)

)

=
∑
r′′∈R′′

∑
k∈{1,··· ,nC}

qM(r′′,k)1

{qM(r′′,k,1)
qM(r′′,k)

≥ τ
}

(v1 − v0)
(qM(r′′,k,1)
qM(r′′,k)

− τu
)
.

Since
qM
(r′′,k,1)
qM
(r′′,k)

= τ < τu for k 6= nC , the user utility is strictly negative for users whose history is not

(r′′, nC , 1). On the other hand, the history (r′′, nC , 1) user does not try the item. By construction,

the item is recommended to no users when the system omits C, and the resulting user utility is

zero.

Secondly, suppose we have τ > τu. Again, for each r′′ ∈ R′′ and k ∈ {1, · · · , nC}, consider a

correlation structure qM that satisfies the following equality and inequality:

qM
(r′′,k,1)
qM
(r′′,k)

> τ if k = 1

qM
(r′′,k,1)
qM
(r′′,k)

= τ if k 6= 1 or nC

qM
(r′′,1,1)+q

M
(r′′,nC,1)

qM
(r′′,1)+q

M
(r′′,nC )

= τ.

Under this correlation structure, item M is recommended to all users when the system omits

conditioning item C in making predictions. However, if it takes all conditioning items into account,

the history (r′′, nC) user does not receive a recommendation. Since trying M is actually beneficial

to all users, there is a missing opportunity if recommendations are fully customized.

A.4 Proof of Proposition 3

Proof. Without loss of generality, we only look at the case of
p(r′,1,1)
p(r′,1)

≥ p(r′,0,1)
p(r′,0)

. The opposite case

can be shown using the exact same logic.

To begin, note that the expected utility of r′ user before the extra degree in customization is

1

{
p(r′,1,1) + p(r′,0,1)

p(r′,1) + p(r′,0)
≥ τ

}(
v1
p(r′,1,1) + p(r′,0,1

pr′
) + v0

p(r′,1,0) + p(r′,0,0)

pr′

)
.

On the other hand, the expected utility of the user after the extra degree in customization is

p(r′,1)

pr′
1

{
p(r′,1,1)

p(r′,1)
≥ τ

}(
v1
p(r′,1,1)

p(r′,1)
+ v0

p(r′,1,0)

p(r′,1)

)
+
p(r′,0)

pr′
1

{
p(r′,0,1)

p(r′,0)
≥ τ

}(
v1
p(r′,0,1)

p(r′,0)
+ v0

p(r′,0,0)

p(r′,0)

)
.
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Therefore, for each r′ ∈ R′, the benefit of the marginal customization is
0 if τ ≤ p(r′,0,1)

p(r′,0)
or τ ≥ p(r′,1,1)

p(r′,1)

−(v1p(r′,0,1) + v0p(r′,0,0))/pr′ if
p(r′,0,1)
p(r′,0)

≤ τ < p(r′,1,1)+p(r′,0,1)
p(r′,1)+p(r′,0)

(v1p(r′,1,1) + v0p(r′,1,0))/pr′ if
p(r′,1,1)+p(r′,0,1)
p(r′,1)+p(r′,0)

≤ τ < p(r′,1,1)
p(r′,1)

.

(Difference)

First, let item C + 1 and the target item are strictly correlated conditional on r′. Because we focus

on
p(r′,1,1)
p(r′,1)

≥ p(r′,0,1)
p(r′,0)

, the two items are strictly positively correlated. That is, we have

v1p(r′,0,1) + v0p(r′,0,0) < 0 and v1p(r′,1,1) + v0p(r′,1,0) > 0.

Thus, for any r′ that does not satisfies (6), the expected utility related to r′ is strictly positive.

Conversely, suppose that the two items are not correlated conditional on r′. By definition of

correlation, it is either both v1p(r′,1,1) + v0p(r′,1,0) and v1p(r′,0,1) + v0p(r′,0,0) are positive or both are

negative. Thus, there always exists τ such that the utility represented in (Difference) is negative.

A.5 Proof of Corollary 4

Proof. To capture the marginal customization effect of the item C+1 delivered through the target

item C + 2, consider first a situation that the mechanism uses item 1 to item C + 1 in making a

prediction about the target item. We can derive the value to the target user using Proposition 1.

Let R′ be the set of outcomes that the first C items can possibly generate. The value to users is

given by ∑
r′∈R′

max{v1p(r′,1,1) + v0p(r′,1,0), 0}+ max{v1p(r′,0,1) + v0p(r′,0,0), 0}.

On the other hand, if the mechanism omits item C + 1 in making a prediction about item C + 2,

the value delivered to the target user is∑
r′∈R′

max{v1p(r′,1,1) + v0p(r′,1,0) + v1p(r′,0,1) + v0pr′(0,0), 0}.

Thus, the marginal customization effect is the difference between the two values above.

To verify the second statement in the proposition, suppose C + 1 and C + 2 are correlated.

That is, for some r′ ∈ R′, we have (v1p(r′,1,1) + v0p(r′,1,0) ≥ 0 and v1p(r′,0,1) + v0p(r′,0,0) ≤ 0) or

(v1pr′(1,1) +v0p(r′,1,0)≤0 and v1p(r′,0,1) +v0p(r′,0,0) ≥ 0), with at least one strict inequality in at least

one case. Suppose we have v1p(r′,1,1) + v0p(r′,1,0) > 0 and v1p(r′,0,1) + v0p(r′,0,0) ≤ 0 for some r′.

Then, by v1pr′(0,1) + v0p(r′,0,0) ≤ 0, we have

max{v1p(r′,1,1) + v0p(r′,1,0), 0} > max{v1p(r′,1,1) + v0p(r′,1,0) + v1p(r′,0,1) + v0p(r′,0,0), 0}.
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The same logic applies to other cases. Now, suppose we have∑
r′∈R′

max{v1p(r′,1,1) + v0p(r′,1,0), 0}+ max{v1p(r′,0,1) + v0p(r′,0,0), 0}

>
∑
r′∈R′

max{v1p(r′,1,1) + v0p(r′,1,0) + v1p(r′,0,1) + v0p(r′,0,0), 0}.

Since max{v1p(r′,1,1) + v0p(r′,1,0), 0}+ max{v1p(r′,0,1) + v0p(r′,0,0), 0} ≥ max{v1p(r′,1,1) + v1p(r′,0,1) +

v0p(r′,1,0) + v0p(r′,0,0), 0}, for every r′ ∈ R′, we should have at least one r′′ ∈ R′ such that we have

max{v1p(r′′,1,1) + v0p(r′′,1,0), 0}+ max{v1p(r′′,0,1) + v0p(r′′,0,0), 0}

>max{v1p(r′′,1,1) + v0p(r′′,1,0) + v1p(r′′,0,1) + v0p(r′′,0,0), 0}.

For such r′′, if either v1p(r′′,1,1) + v0p(r′′,1,0) ≥ 0 and v1p(r′′,0,1) + v0p(r′′,0,0) ≥ 0 or v1p(r′′,1,1) +

v0p(r′′,1,0) ≤ 0 and v1p(r′′,0,1) + v0p(r′′,0,0) ≤ 0, we should have

max{v1p(r′′,1,1) + v0p(r′′,1,0), 0}+ max{v1p(r′′,0,1) + v0p(r′′,0,0), 0}

= max{v1p(r′′,1,1) + v1p(r′′,0,1) + v0p(r′′,1,0) + v0p(r′′,0,0), 0}.

Hence, it should be the case that we have either (v1p(r′′,1,1) + v0p(r′′,1,0) ≥ 0 and v1p(r′′,0,1) +

v0p(r′′,0,0) ≤ 0) or (v1p(r′′,1,1) + v0p(r′′,1,0) ≤ 0 and v1p(r′′,0,1) + v0p(r′′,0,0) ≥ 0) with at least one

inequality holding with strict inequality. That is, item C + 1 and C + 2 are correlated.

A-4 Proof of Proposition 4

Proof. We compare user utilities before and after item C + 1 is added to the system. As before,

let r′ denote the ratings over C conditioning items. Using Lemma 1, the history r′ user’s utility

before item C + 1 is added is

1

{
p(r′,1,1) + p(r′,0,1)

p(r′,1) + p(r′,0)
≥ −w0

w1 − w0

}(
v1
p(r′,1,1)

pr′
+ v0

p(r′,1,0)

pr′
+ v1

p(r′,0,1)

pr′
+ v0

p(r′,0,0)

pr′

)
.

On the other hand, the user utility after the addition of the item is

p(r′,1)

pr′
1

{
p(r′,1,1)

p(r′,1)
≥ −w0

w1 − w0

}(
v1
p(r′,1,1)

p(r′,1)
+ v0

p(r′,1,0)

p(r′,1)

)
+
p(r′,0)

pr′
1

{
p(r′,0,1)

p(r′,0)
≥ −w0

w1 − w0

}(
v1
p(r′,0,1)

p(r′,0)
+ v0

p(r′,0,0)

p(r′,0)

)
.

We will only deal with the case when p(r′,1,1) ≥ p(r′,0,1) as the exact same logic can be applied to

the other case. In this case, we have

p(r′,0,1)

p(r′,0)
≤
p(r′,1,1) + p(r′,0,1)

p(r′,1) + p(r′,0)
≤
p(r′,1,1)

p(r′,1)
.
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Thus, if the item is recommended to the user in the system without item C + 1, it will also be

recommended to the history (r′, 1) user in the system with item C + 1. Conversely, if the item is

not recommended to the user in the system without item C + 1, it will not be recommended to the

user with history (r′, 0) in the system with item C + 1. Therefore, there are two cases when the

extra degree in customization strictly hurts the user. The first is

τu <
p(r′,0,1)

p(r′,0)
< τp ≤

p(r′,1,1) + p(r′,0,1)

p(r′,1) + p(r′,0)
.

That is, the item is recommended to the target user in the system without item C + 1, but in the

system with item C + 1 it is only recommended to the users whose history is (r′, 1) even though it

is expected to generate positive utility to history (r′, 0) users.

On the other hand, there is also a case that the item is recommended to history (r′, 1) users

under the system with item C + 1 even though it is not expected to generate positive utility to the

users and the system without item C + 1 does not recommend the item to users. This case arises

when

τu >
p(r′,1,1)

p(r′,1)
≥ τp >

p(r′,1,1) + p(r′,0,1)

p(r′,1) + p(r′,0)
.

These two conditions coincide with the conditions presented in the proposition.

A.6 Proof of Proposition 5 and Corollary 5

Proof. For notational simplicity, let P [y(1,1) ≥ N1 − y(1,1)] = T (m, 2m− 1, s). That is,

T (m, 2m− 1, s) =
2m−1∑
k=m

(
2m− 1

k

)
sk(1− s)2m−1−k.

We first need to show that v(m|s) increases in m. Let Xn ∼ Binomial(n, s). Note that the

associated cumulative distribution function of the binomial random variable is

P [Xn ≤ k] =
k∑
i=0

(
n

i

)
si(1− s)n−i = 1−

n∑
i=k+1

(
n

i

)
si(1− s)n−i = 1− T (k + 1, n, s).
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Using this, we have

T (m+ 1, 2m+ 1, s) =1− P [X2m+1 ≤ m]

=1− P [X2m+1 ≤ m|X2m−1 ≤ m− 2]P [X2m−1 ≤ m− 2]

− P [X2m+1 ≤ m|X2m−1 = m− 1]P [X2m−1 = m− 1]

− P [X2m+1 ≤ m|X2m−1 = m]P [X2m−1 = m]

=1− P [X2m−1 ≤ m− 2]− (1− s2)P [X2m−1 = m− 1]− (1− s)2P [X2m−1 = m]

=T (m− 1, 2m− 1, s)− (1− s2)
(

2m− 1

m− 1

)
sm−1(1− s)m

− (1− s)2
(

2m− 1

m

)
sm(1− s)m−1.

Here, note that
(
2m−1
m−1

)
=
(
2m−1
m

)
and T (m− 1, 2m− 1, s) = T (m, 2m− 1, s) +

(
2m−1
m−1

)
sm−1(1− s)m.

The last expression can be simplified to

T (m+ 1, 2m+ 1, s) = T (m, 2m− 1, s)− (1− 2s)

(
2m− 1

m

)
sm(1− s)m.

Thus, we have

v(m+ 1|s)− v(m|s) =− (1− 2s)(T (m+ 1, 2m+ 1, s)− T (m, 2m− 1, s))

=(1− 2s)2
(

2m− 1

m

)
sm(1− s)m ≥ 0.

That is, for any realization of s, the user always expects weakly higher utility when there are more

accumulated data points.

To show the diminishing marginal return property, let ∆v(m|s) be the marginal externality that

the (m+ 1)th user contributes to the subsequent user. That is,

∆v(m|s) = v(m+ 1|s)− v(m|s).

Using the derivation in the above proposition, it has a closed form representation of

∆v(m|s) = (1− 2s)2
(

2m− 1

m

)
(s(1− s))m.
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Consider the ratio between the following two increments:

∆v(m+ 1|s)
∆v(m|s)

=
v(m+ 2|s)− v(m+ 1|s)
v(m+ 1|s)− v(m|s)

=

(
2m+1
m+1

)
sm+1(1− s)m+1(

2m−1
m

)
sm(1− s)m

=
2(2m+ 1)

m+ 1
s(1− s) < 4s(1− s) ≤ 1.

That is, the increment diminishes.

The proof of Corollary 5 immediately follows since v(m+ 1|s) is strictly higher than v(m|s) for

all s except s = 1
2 .

A.7 Proof of Proposition 6

Proof. To begin, let x be the history of the target user. Note that the Dirichlet distribution is

stable with respect to any aggregation.25 Given this property, we have( ∑
r∈R+

i (x)

q1r ,
∑

r∈R−i (x)

q1r ,
∑

r/∈R+
i (x)∪R−i (x)

q1r

)
∼ Dir

( ∑
r∈R+

i (x)

α1
r ,

∑
r∈R−i (x)

α1
r ,

∑
r/∈R+

i (x)∪R−i (x)

α1
r

)
.

For the sake of notation, we denote
∑

r∈R+
i (x) q

1
r and

∑
r∈R−i (x) q

1
r by b1 and b2 respectively.

Similarly, let β1, β2 and β3 denote
∑

r∈R+
i (x) α

1
r ,
∑

r∈R−i (x) α
1
r and

∑
r/∈R+

i (x)∪R−i (x) α
1
r respec-

tively. The conditional probability of positive experience with i can be represented as b1
b1+b2

when

(b1, b2, 1− b1 − b2) ∼ Dir(β1, β2, β3).
For k ∈ {1, 2, 3}, define an independent set of random variables γk each of which follows a

gamma distribution with a shape parameter βk and a rate parameter θ for some θ > 0; i.e.,

γk ∼ Gamma(βk, θ).

It is well known that

(
γ1

γ1+γ2+γ3
, γ2
γ1+γ2+γ3

, γ3
γ1+γ2+γ3

)
∼ Dir(β1, β2, β3). Thus, we have the

following equality in distribution:

(b1, b2)
d
=

(
γ1

γ1 + γ2 + γ3
,

γ2
γ1 + γ2 + γ3

)
.

Here, note that if X
d
= Y , then h(X)

d
= h(Y ) for any deterministic function h. Letting h1(x1, x2) =

x1
x1+x2

and h2(x1, x2) = x2
x1+x2

, we have

b1
b1 + b2

d
=

γ1
γ1 + γ2

and
b2

b1 + b2

d
=

γ2
γ1 + γ2

.

Furthermore, using the relationship between the gamma distribution and the Dirichlet distribution

25If (p1, · · · , pn) is Dirichlet with parameter α1, · · · , αn, then a collection of sums of elements also follows Dirichlet.
For example, when n = 4, (p1 + p4, p2 + p3) ∼ Dir(α1 + α4, α2 + α3).
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once again, we conclude that (
b1

b1 + b2
,

b2
b1 + b2

)
∼ Beta(β1, β2).

That is, the predictive experience of the target user with i takes the form of the following random

variable: ẑNi ∼ Beta(β1, β2). The first statement in the proposition can be obtained by simply

taking an expectation of ẑNi :

ẑNi =
β1

β1 + β2
=

∑
r∈R+

i (x) α
1
r∑

r∈R+
i (x)∪R−i (x) α

1
r

.

Lastly, recall that we already have shown that∑
r∈R+

i (x) q
1
r∑

r∈R+
i (x)∪R−i (x) q

1
r

∼ Beta
( ∑
r∈R+

i (x)

α1
r ,

∑
r∈R−i (x)

α1
r

)
,

for given data X and user rating x. Consider now that the data is collected from K users. Let K1

be the number of ratings whose associated outcomes are in R+
i (x), K2 be the number of ratings

whose associated outcomes are in R−i (x), and M be the total number of trials whose outcome is

consistent with x, i.e., K = K1 +K2. We have

lim
K→∞

E[ẑKi |XK , x] = lim
K→∞

K1 +
∑

r∈R+
i (x) α

0
r

K1 +K2 +
∑

r∈R+
i (x)∪R−i (x) α

0
r

a.s.
= lim

K→∞

K1

K
.

Here, XK denotes the data from K users. By the law of large numbers, the last term is the same

as zi. On the other hand,

lim
K→∞

Var[ẑKi |XK , x] = lim
K→∞

(K1 +
∑

r∈Ri(x)
α0
r)(K2 +

∑
r∈R+

i (x) α
0
r)

(K +
∑

r∈R+
i (x)∪R−i (x) α

0
r)

2(K + 1 +
∑

r∈R+
i (x)∪R−i (x) α

0
r)

≤ lim
K→∞

1

K + 1 +
∑

r∈R+
i (x)∪R−i (x) α

0
r

= 0,

which gives the convergence in mean-square to zi.

A-7 Proof of Proposition 7

Proof. The result immediately follows from the two expressions of the predictions:

x̂Gi =

∑
r∈R+

i (∅) yr +
∑

r∈R+
i (∅) α

0
r

n− 1 +
∑

r∈R α
0
r

and x̂ARi =

∑
r∈R+

i (∅) yr

n− 1
.

As n→∞, it is obvious that we have x̂Gi = x̂ARi , ∀i.
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