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1 Introduction

Ad-valorem fees and taxes which depend positively on transaction prices are widely

used in practice. Platforms that facilitate transactions between buyers and sellers

typically charge sellers ad-valorem fees, with fees for a transaction being a percentage

of the transaction price set by sellers. Well-known examples include online market-

places (such as Amazon and eBay) and payment card networks (such as Visa and

MasterCard). Given these platforms do not incur significant costs that vary with

transaction prices, their use of ad-valorem fees raises the question of why ad-valorem

fees are so prevalent. Ad-valorem sales taxes are also widely used, with their desir-

ability vis-a-vis per-unit (or specific) taxes the subject of a substantial literature.

In this paper, we provide a new rationale for the use of ad-valorem fees and

taxes. The theory explains why profit-maximizing platforms favor ad-valorem fees

even if they do not incur any variable costs of enabling trades. The same theory also

implies that a regulatory authority that maximizes social welfare subject to covering

a platform’s fixed costs should similarly make use of ad-valorem fees when regulating

fees for such platforms, and that a tax authority should prefer ad-valorem sales taxes

rather than per-unit sales taxes.

The key idea behind our theory is that when a market involves many different

goods that vary widely in their costs and values that may not be directly observable,

then ad-valorem fees and taxes represent an efficient form of price discrimination

because the value of a transaction is plausibly proportional to the cost of the good

traded. The situation captures the usual scenario facing platforms, regulators or

tax authorities. For example, within any specific market category (e.g., electronics),

Amazon and eBay have goods traded that are worth a few dollars and others that

are worth hundreds or even thousands of dollars. In such a setting, per-unit fees and

taxes have the problem that they distort the price elasticity of demand across goods,

since they add proportionally more to the price of a low-cost low-value item compared

to a high-cost high-value item, thus reducing the efficiency of revenue extraction. Ad-

valorem fees and taxes that are proportional to the transaction price do not lead to

such a distortion and so can ensure the optimal Ramsey pricing. In fact, we show

that in our setting, charging ad-valorem fees and taxes allows the platform, regulator

or tax authority to achieve the same level of profit or welfare that could be obtained

under third-degree price discrimination as if the relevant authority could perfectly
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observe the cost and valuation for each good traded and set a different optimal fee

for each.

We then extend the theory to accommodate the fact that many platforms charge

sellers a small fixed fee for each transaction in addition to the main ad-valorem com-

ponent. Table 1 illustrates two such examples.1 To do so, we allow for the fact that

platforms typically incur a small marginal cost per transaction. We show that an

affine fee schedule (a fixed fee per transaction plus a fee proportional to the trans-

action price) is optimal if and only if demand for the sellers belongs to the class

with constant curvature of inverse demand (which includes linear demand, constant-

elasticity, and exponential demand).

Table 1. Platform fee schedules

Amazon Visa

DVD 15% + $1.35 Gas Station 0.80% + $0.15

Book 15% + $1.35 Retail Store 0.80% + $0.15

Video Game 15% + $1.35 Restaurant 1.19% + $0.10

Game Console 8% + $1.35 Small Ticket 1.50% + $0.04

This result allows us to explore policy questions surrounding the use of ad-valorem

fees by platforms, for example, whether platforms that do not incur proportional

costs should be allowed to charge a percentage-based fee structure. The issue is

particularly relevant for the payment card industry and is currently under debate in

many countries, including Australia, Canada and the United States.2 We address

this policy question by considering a regulated setting in which the regulator seeks to

maximize social welfare but allows the platform to recover its costs, including fixed

1The fee schedules reported in Table 1 are fees that Amazon and Visa charge to sellers for each
transaction on the platform. Note that Visa fees shown in Table 1 are interchange fees for debit card
services in the U.S. market. These fees, set by Visa, are paid by merchants to card issuers through
merchant acquirers.

2Payment card fees are controversial in many countries. One particular issue is why payment
card networks set interchange fees (in the case of Visa and MasterCard) or merchant fees (in the
case of American Express) that depend on transaction prices rather than being a fixed amount per
transaction. Merchants and policymakers point out that debit and prepaid card transactions do not
provide credit or float and bear very small fraud risk; therefore, they do not warrant a percentage-
based fee structure. See “Transparency, Balance and Choice: Canada’s Credit Card and Debit Card
Systems,” Chapter 5, the Standing Senate Committee on Banking, Trade, and Commerce, Canada,
June 2009.
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costs, and has to decide whether to use ad-valorem fees to do so. In contrast to the

policymakers’ concerns regarding the use of ad-valorem fees, we show that for the

class of demand functions that rationalizes a platform’s use of affine fee schedules,

welfare in this constrained case is always higher when a proportional fee is used to

recover costs, in addition to a fixed per-transaction fee. Thus, our theory also suggests

a policymaker that wishes to regulate platform fees to cover costs should also make

use of ad-valorem fees.

In showing the optimality of ad-valorem fees we rely on two important assumptions

in order to get strong analytical results: (i) inverse demands are proportional across

goods, so that a scaling parameter that captures the cost and value of the good is the

only difference across the goods traded, and (ii) sellers compete as identical Bertrand

competitors for each good. In Section 4 of the paper, we consider what happens when

these assumptions are relaxed. Our robustness exercises clarify that while assumption

(i) is the key to pining down the price-discrimination role of ad-valorem fees, it is not a

knife-edge result. Rather, ad-valorem fees still allow a platform to do well when there

is some unobserved random variation of demand across goods (such as in elasticities).

On the other hand, assumption (ii) is primarily for analytical tractability; it allows us

to isolate the price discrimination role for ad-valorem fee schedules from their role in

mitigating double marginalization, which only arises when sellers have market power.

We show that, even when sellers have market power (including the extreme case that

they are local monopolists), a platform loses very little by using the same affine fee

schedule derived in the Bertrand competition setting.

Our paper is distinct from some recent studies that consider the use of proportional

fees by platforms. Shy and Wang (2011) focus on the market power of the platform

and sellers, and argue that a proportional fee is preferred over a fixed per-transaction

fee since it helps mitigate double marginalization. Several papers (e.g., Foros et.

al. 2014, Gaudin and White 2014a and Johnson 2015) have explored the optimality

of a retailer (in our context, a platform) that lets suppliers (in our context, sellers)

set final prices and receive a share of the revenue. Revenue sharing is equivalent to

proportional fees, and this arrangement is known as the agency model. Like Shy and

Wang (2011), they also assume suppliers are imperfect competitors but compare the

agency model to a different alternative—the traditional wholesale model of retailing

in which the retailer sets prices to consumers. The desirability of proportional fees
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in these papers again relates back to the ability of proportional fees to mitigate,

although not eliminate, double marginalization.3 As noted above, our paper shuts

down double marginalization as an explanation for ad-valorem fees by assuming that

sellers compete as identical Bertrand competitors for each good, thereby isolating the

role ad-valorem fees play as a price discrimination device.

Loertscher and Niedermayer (2012) consider an independent private values setup

with privately informed buyers and sellers that trade a good. They show that fee-

setting is an optimal mechanism for the intermediary and provide a limit argument

for why an intermediary’s optimal fees (or a government’s optimal taxes) converge to

fees (or taxes) that are linear in the traded price as markets become increasingly thin.

In their setup, market thinness is captured as the truncation of the buyers’ and seller’s

distribution, with truncation arising because of a fixed cost of a transaction. Their

linearity result rests on the property that the conditional distributions of buyers’ value

and the sellers’ cost converge to generalized Pareto distributions as the truncation

points approach the upper and lower bounds of the respective supports. They then

use the fact that linear fees are optimal under generalized Pareto distributions to

show that linear fees are optimal in the limit. Thus, their linearity result relies on the

same property for why the optimal per-transaction fee for a particular good is linear

in its price in our paper, which comes from the properties of the generalized Pareto

distribution, which they independently discovered.

Finally, Muthers and Wismer (2013) propose that a commitment by a platform

to use proportional fees can reduce a hold-up problem that arises from the platform

wanting to compete with sellers after they have incurred costs to enter the platform.

All these studies propose different (and complementary) rationales for why “plat-

forms” may choose ad-valorem fees, but they all assume the platform only deals with

one type of good. Our setting is one with many goods that come in different scales,

with potentially very different costs and valuations. Charging ad-valorem fees and

taxes allows the platform, regulator or tax authority to achieve the same level of profit

or welfare that could be obtained under third-degree price discrimination, which we

believe is a primary reason for the widespread use of ad-valorem fees. Our article

3Gaudin and White (2014b) show related results in the context of a revenue-maximizing gov-
ernment in comparing ad-valorem vs. per-unit sales taxes. Llobet and Padilla (2014) show related
results in the context of an innovator that has licensed its technology to a downstream firm and has
to decide on whether to use ad-valorem or per-unit license fees.
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is therefore related to the substantial literature on monopolistic third-degree price

discrimination (e.g., see Aguirre et al. 2010, for a general analysis).

Our paper also offers a new perspective on the use of ad-valorem sales taxes. One of

the oldest literatures in the formal study of public finance is the choice between a per-

unit (or specific) tax and an ad-valorem tax (a tax proportional to transaction prices).

The main focus has been on the role of different forms of imperfect competition

among sellers (see Keen, 1998 for a survey).4 In contrast, our paper shuts down

such channels by assuming sellers are identical price competitors. Rather, we focus

on a previously overlooked aspect that ad-valorem taxes allow the tax authority to

efficiently price discriminate across goods with different costs and valuations based on

Ramsey pricing principles.5 Thus, our paper contributes to the voluminous literature

on indirect taxation, providing a new theory for why ad-valorem sales taxes should

be preferred.

The remainder of this paper is structured as follows. Section 2 introduces the

model. Section 3 provides results on the optimality and efficiency of ad-valorem taxes

and fees. Section 4 explores the robustness of our findings to alternative specifica-

tions, including demand functions outside the class with constant curvature of inverse

demand (Section 4.1.1), unobserved random variation in demand (Section 4.1.2), and

sellers’ market power (Section 4.2). Finally, Section 5 offers some concluding remarks.

2 The model

We consider an environment where multiple goods are traded in a market. For each

good traded, there is a unit mass of buyers each of whom wants to purchase one unit

of the good. We consider a regulator of the market (it could be a tax authority, a

platform operator that facilitates the trades or a regulator of such a platform) that

wishes to collect some revenue from traders in the market by levying taxes (in the

case of a platform, we will refer to these as fees). The market could consist of a

narrow category of goods (e.g., external hard drives) or a wide variety of different

4Important contributions include Suits and Musgrave (1953), Delipalla and Keen (1992), Skeath
and Trandel (1994), Anderson et al. (2001) and Hamilton (2009).

5In reality, we often observe per-unit taxes on alcohol, cigarettes and gasoline. One explanation
is that ad-valorem taxes on these goods may promote the consumption of lower quality products
that could result in worse side effects. Our paper abstracts from this issue.
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goods that the regulator cannot easily distinguish (e.g., electronics).

Within such a market, there are multiple identical sellers of each good who engage

in Bertrand competition.6 Different goods within the market are indexed by c, which

can be thought of as a scale parameter, so that different goods can be thought of

as having similar demands except that they come in different scales. In particular,

the per-unit cost of good c to sellers (which is known to all buyers and sellers of the

good) is normalized to c and the value of the good to a buyer drawing the benefit

parameter b ≥ 0 is c (1 + b), so the scale parameter increases the cost and the buyer’s

valuation proportionally.7 We denote the lowest and highest values of c as cL and cH

respectively, with cH > cL > 0. We assume 1 + b is distributed according to some

smooth (i.e., twice continuously differentiable) and strictly increasing distribution

function F on
[
1, 1 + b

]
, where b > 0. (We do not require that b is finite.) Only

buyers know their own b, while F is public information. Let f = F ′ be the density

and h = f/ (1− F ) the hazard rate of F .

This setup captures the idea that for a given market that can be identified by the

regulator, the main difference across the goods traded is their scale (i.e., some goods

are worth a little and some a lot). In comparison to the wide range of scales of goods

traded, potential differences in the shapes of demand functions across the different

goods traded are not likely to be of first-order importance. The assumption that

buyers’ values for a good can be scaled by c is broadly consistent with a key empirical

finding of Einav et al. (2013). They examined quasi-experimental observations from a

large number of auctions of different goods on eBay and found that the distribution of

buyer valuations for a good is proportional to the normal transaction price of the good

(taken as the average price across posted-price transactions of the particular good).

Since we will show that the transaction price predicted by our model is proportional

to c, this finding implies an inverse demand function that is proportional to c, which

is the essential property of our model as shown below.8

Our demand specification can also be justified on alternative grounds. In Ap-

pendix A we provide a setting which generates the same demand specification but

there need not be a positive correlation between costs and consumer valuations of

6We discuss what happens when sellers have market power in Section 4.2.
7The assumption b ≥ 0 is an innocuous normalization. In fact, we do not have to consider buyers

with b < 0 given their valuation for a product is less than its cost.
8We will show the robustness of our results to this assumption in Section 4.1.2.
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the goods traded. Rather, we consider a platform that reduces trading frictions, and

assume the loss to buyers of using the less efficient trading environment (i.e., trading

without using the platform) is proportional to the cost or price of the goods traded.

This would apply whenever the alternative trading environment exposes the buyer to

some risk or inconvenience that is proportional to the amount she pays for the good.

With this alternative demand specification, we can apply the rest of our model setup

to obtain identical results.

We assume the regulator cannot directly observe which good is being traded within

a given market (i.e., the scale of the good sold), but only the transaction price of each

trade. As a result, taxes can only condition on the price of a transaction (i.e., not on

the actual cost of sellers or valuation of buyers). Since sellers of a particular good are

identical and compete in price, competition between sellers for a good c will result in

an equilibrium in which sellers charge buyers a common price pc. In general, the tax

schedule (equivalently, fee schedule) can be written as T (pc) for a given price of the

transaction pc, which can be decomposed into a buyer tax schedule T b (pc) and seller

tax schedule T s (pc). Each tax schedule can consist of two components, a fixed per-

transaction component (i.e., a specific tax) which is independent of pc and a variable

per-transaction component which varies with pc (i.e., the ad-valorem component).9

Given that identical sellers compete for buyers, any tax charged to sellers will be

passed through to buyers. The final price faced by buyers will reflect any taxes, and

the buyer treats these the same whether she faces them directly or through sellers.

Due to this standard result on the irrelevance of the incidence of taxes across the two

sides, we can assume without loss of generality that only the seller side is charged.

With this normalization, we write the sellers’ tax schedule as simply T (pc). In case

of a platform, we call this a fee schedule.

The number of transactions Qc for a good c is the measure of buyers who obtain

non-negative surplus from buying the good, Pr (c (1 + b)− pc ≥ 0). Therefore, we can

9We assume all buyers and sellers have access to the market, so in the case of a platform, we
abstract from joining fees. Seller joining fees would not help in our model since the platform already
extracts all surplus through sellers due to the Bertrand competition assumption. If buyers have to
make participation decisions, buyer joining fees would also be redundant provided we assume buyers
know their draw of b before deciding whether to join the platform and given that each buyer wants
to purchase exactly one unit of a good.

8



write the demand function for good c as

Qc (pc) ≡ Q
(pc
c

)
≡ 1− F

(pc
c

)
. (1)

The corresponding inverse demand function for good c is pc (Qc) = cF−1 (1−Qc),

which note is proportional to c. This form of demand function, hinged on a scaled

price, is reminiscent of the one used in Weyl and Tirole (2012), which they refer to

as the stretch parametrization of a general demand function.

Finally, assume c takes on a finite number of distinct values in [cL, cH ], with the

set of all such values being denoted C. The cumulative distribution of c on C is

denoted G and the associated probability for each distinct value of c is denoted gc,

with
∑

c∈Cgc = 1.

3 The optimality of ad-valorem taxes and fees

In this section, we rationalize ad-valorem taxes and fees. We first show that when

there is no variable cost associated with the regulator, a simple form of ad-valorem

taxes and fees, which are proportional to price, can be used to maximize revenue and

welfare (subject to a minimum revenue constraint). We then extend the theory to

allow for the fact that platforms typically incur a small marginal cost per transaction.

We show that an affine fee schedule, as shown in Table 1, is optimal if and only if

demand for goods belongs to a particular yet broad family. We show under the same

family of demand functions, that an affine fee schedule remains optimal even if the

platform is regulated to just cover its costs, including fixed costs.

3.1 Proportional taxes and fees

We first rationalize the use of proportional taxes and fees when there is no variable cost

associated with taxing (or handling) trades. Consider the problem facing a regulator

in a hypothetical full-information setting in which the regulator can observe c for each

good and wants to maximize its revenue by setting a different tax rate Tc for each

good. In case the regulator is a profit-maximizing platform operator, this captures

the situation in which the variable cost of handling transactions on the platform is

zero. If the regulator sets the tax Tc to sellers of good c, the price for good c will
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be pc = c + Tc due to Bertrand competition, and the corresponding revenue from

trades is Rc = TcQ
(
1 + Tc

c

)
for good c. The regulator’s problem is to choose Tc for

each good c to maximize the total revenue across all goods in the market, denoted as

R =
∑

c∈C gcRc.

Similarly, we could consider a social planner choosing a tax schedule to maximize

welfare subject to raising a minimum level K of revenue. This covers the case of

a tax authority trying to optimally raise a certain amount of tax revenue from the

market. It also covers the case of a regulatory authority that regulates the fee schedule

charged by a platform so as to maximize welfare subject to the platform’s break-even

condition in case the platform faces a fixed cost of operation of K. In general, if the

regulator sets the tax schedule Tc, the welfare generated by the trade of good c is

Wc =
∫∞
Tc
Q
(
1 + t

c

)
dt + TcQ

(
1 + Tc

c

)
. Assuming it is possible to raise at least K in

revenue, the regulator’s problem is to choose Tc to maximize the total welfare across

all goods in the market, denoted as W =
∑

c∈C gcWc −K, subject to the constraint

that R ≥ K.

Denote eTc as the demand elasticity with respect to Tc. Then, the revenue-

maximizing level of Tc, denoted T ∗c , needs to solve the first-order condition

eT ∗
c

= −T
∗
c

c

Q′
(

1 + T ∗
c

c

)
Q
(

1 + T ∗
c

c

) = 1, (2)

while the welfare-maximizing level of Tc, denoted T rc , needs to solve the first-order

condition

eT rc = −T
r
c

c

Q′
(

1 + T rc
c

)
Q
(

1 + T rc
c

) =
η

1 + η
, (3)

where η > 0 is the Lagrangian multiplier associated with the revenue constraint

R ≥ K. Note that the welfare-maximizing tax is characterized by the same first-

order condition as the revenue maximization problem except that the tax is set so

that the demand elasticity with regard to Tc will be lower in magnitude, reflecting

that less than 100% of the weight in the social planner’s objective is put on revenue

recovery.

It is straightforward to see that in both cases, the optimal tax is pinned down by

the ratio ω = Tc
c

that solves (2) or (3). This implies Tc = ωc, which combined with

10



the fact pc = c + Tc, implies the regulator’s full-information optimal solution can be

achieved using the linear ad-valorem (or proportional) tax schedule

T (pc) =
ω

1 + ω
pc. (4)

Implementation is possible even though the regulator cannot identify each good, given

the slope of the tax schedule is strictly between 0 and 1, so it never pays for a seller

to set a lower price in order to pay the lower tax meant for a lower-cost seller.

The findings are summarized in the following proposition. The proposition, as

with other propositions in this section, is formally established in Appendix B.

Proposition 1 (Revenue and welfare maximization)

Suppose the revenue function Rc is strictly concave in either tax Tc or quantity Qc.

Provided there is no variable cost associated with taxing (or handling) trades, a pro-

portional tax schedule is optimal. Specifically,

(i) the proportional tax schedule (4) maximizes the revenue that a regulator can ex-

tract from a market, where the value of ω = Tc
c

solves (2);

(ii) the proportional tax schedule (4) maximizes welfare subject to raising the revenue

K, where the value of ω = Tc
c

solves (3);

(iii) the tax rate ω
1+ω

chosen to maximize (constrained) welfare is lower than that

chosen to maximize revenue.

The proposition provides a new argument in the long-standing debate between

specific versus ad-valorem sales taxes. We show that ad-valorem taxes enable the tax

authority to charge different specific taxes to different goods based on the value of

transactions, which minimizes distortions in our setting. To better understand why

proportional taxes and fees are the most efficient way to raise revenue for a platform,

tax authority or a regulator, consider what would happen under the alternative in

which all goods in the market face a fixed per-transaction tax T . In our model setup,

(1) implies that the demand function for any given good c can be written as

Qc (pc) = Q

(
1 +

T

c

)
.

Charging a fixed per-transaction tax T for all goods would imply the effective rate of

taxation, T/c, is higher for low-cost goods than for high-cost goods. Given the usual
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condition that the price elasticity of demand increases in price (known as Marshall’s

second law of demand), this implies that the demand elasticity with respect to T would

be higher for low-cost goods than for high-cost goods. Compared to this situation,

by shifting taxes from low-cost goods to high-cost goods, more revenue would be

extracted from goods with low price elasticity of demand, thereby improving the

efficiency of revenue extraction. This is how a proportional tax schedule achieves this

result, which is in line with classic Ramsey pricing principles. This logic can also be

illustrated by noting that a fixed per-transaction tax would likely result in some very

low-value goods not being traded at all due to the high burden a fixed per-transaction

tax would imply for such goods. A proportional tax schedule can instead prevent this.

3.2 Affine fee schedules

Proposition 1 helps explain the widespread use of proportional taxes and fees by tax

authorities, regulatory authorities and platforms alike. However, in the case of plat-

forms, we often see the use of affine fee schedules, which contain a fixed per-transaction

fee in addition to the proportional component. Table 1 gave some examples of such

fees. In this section, we show how such fee schedules are optimal for a platform or

its regulator once we allow the platform to incur a positive marginal cost of handling

each trade. We will show the optimality only holds for a restricted class of demand

specifications, albeit a reasonably general one.

In the following analysis, we assume that the platform incurs a cost d > 0 for

handling each trade, and that b > d/cL so it is efficient for some buyers to trade with

sellers even for the good with the lowest scale. Per-transaction costs likely arise in the

examples provided in Table 1 given there is a probability any given transaction will

require an intervention by the platform, such as in cases where disputes arise. In the

case of Visa, card issuers also incur incremental costs for card processing, clearance

and settlement.10

10According to Federal Reserve Board estimates in 2011, the average incremental cost can be as
high as 21 cents for a typical debit card transaction in the U.S. market.
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3.2.1 A profit-maximizing platform

Consider again the full-information setting in which the platform can observe c for

each good and set a fee accordingly. The first-order condition for optimality can be

written as

eT ∗
c

= −T
∗
c

c

Q′
(

1 + T ∗
c

c

)
Q
(

1 + T ∗
c

c

) =
T ∗c

T ∗c − d
,

which requires that

T ∗c − d
c

= −
Q
(

1 + T ∗
c

c

)
Q′
(

1 + T ∗
c

c

) . (5)

Since the right-hand-side of (5) is the inverse hazard rate for F evaluated at 1+T ∗c /c,

we can infer a unique family of distributions and its corresponding demand functions

that justify a platform’s optimal fee schedule being an increasing affine function of the

price of each good. The findings are established formally in the following proposition.

Proposition 2 (Profit maximization)

Suppose d > 0. The platform’s optimal fee schedule is an increasing affine function

of the price of each good with slope less than unity, that is,

T (pc) =
λd

1 + λ (2− σ)
+

pc
1 + λ (2− σ)

, (6)

where λ > 0 and σ < 2 if and only if one of the following equivalent conditions hold:

(i) the distribution of buyers’ benefits F has an affine inverse hazard rate (including

the special case the inverse hazard rate is constant) with the condition h′ + h2 > 0

(i.e., the hazard rate h never decreases too fast);

(ii) the distribution of buyers’ benefits F is the generalized Pareto distribution

F (x) = 1− (1 + λ (σ − 1) (x− 1))
1

1−σ , (7)

where λ > 0 is the scale parameter and σ < 2 is the shape parameter;

(iii) the corresponding demand functions for sellers on the platform are defined by the
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class of demands with constant curvature of inverse demand

Qc(pc) = 1− F
(pc
c

)
=
(

1 + λ (σ − 1)
(pc
c
− 1
)) 1

1−σ
. (8)

Proposition 2 focuses on the platform’s profit-maximizing fee schedule. It char-

acterizes the class of demand functions that rationalizes a platform’s optimal fee

schedule being an increasing affine function of the price of the good in our model

setting. For the demand faced by sellers, this turns out to be the broad class of de-

mand functions that has constant curvature of inverse demand defined by (8), where

the curvature of inverse demand σ is the elasticity of the slope of the inverse demand

with respect to quantity. As shown in Proposition 2, this class of demands can be de-

rived from the condition that buyers’ benefits follow a generalized Pareto distribution

(GPD), so we will refer to it as the GPD demand in our following analysis.11 Note

the platform’s optimal fee schedule, which is given by (6), has a fixed per-transaction

component only if there is a positive cost to the platform of handling each transaction.

Proposition 2 suggests that the proportional component of the platform’s optimal

fee schedule hinges on the constant pass-through of c, which is a demand shifter.

Also, consistent with Bulow and Pfleiderer (1983) and Weyl and Fabinger (2013), we

can show GPD demand functions feature constant pass-through of cost, which is d in

our setting. Using that pc = c+ Tc (pc), both results can be verified by rewriting (6)

as

T ∗c =
λd+ c

λ (2− σ)
, (9)

which implies a pass-through rate of 1
λ(2−σ)

for c and a pass-through rate of 1
2−σ for d.

Note it is easily confirmed that (9) is the solution to (5) given the demand specification

(8). This result shows that not only does an increasing affine fee schedule allow a

platform to achieve its optimal outcome when there is heterogeneity in the goods that

are traded (i.e., in c), but as can be seen from (6) it does so without requiring that

the platform knows the distribution G of goods that are traded.

For the class of GPDs and implied demand functions, σ is the key parameter.

When σ < 1, the support of F is [1, 1 + 1/λ (1− σ)] and it has increasing hazard.

Accordingly, the implied demand functions Qc(pc) are log-concave and include the

11This class of demands is considered by Bulow and Pfleiderer (1983), Aguirre et al. (2010), Bulow
and Klemperer (2012), Weyl and Fabinger (2013) among others for various applications.
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linear demand function (σ = 0) as a special case. Alternatively, when 1 < σ < 2, the

support of F is [1,∞) and it has decreasing hazard. The implied demand functions

are log-convex and include the constant elasticity demand function (σ = 1 + 1/λ) as

a special case. When σ = 1, F captures the left-truncated exponential distribution

F (x) = 1 − e−λ(x−1) on the support [1,∞), with a constant hazard rate λ. This

implies the exponential (or log-linear) demand Qc(pc) = e−λ(
pc
c
−1).

3.2.2 Ramsey regulation

We now consider the case where a social planner wants to maximize total welfare

conditional on allowing the platform to just recover its costs, including a fixed cost

K plus the per-transaction cost d > 0. We are interested in knowing whether such a

planner will also want to use an affine fee schedule to do so.

As was the case without a per-transaction cost, the platform’s full-information

problem and the social planner’s full-information problem are aligned other than

that the optimal demand elasticity with regard to Tc is equal to a lower level under

the planner’s problem. The first-order condition for social planner’s problem is

eT rc = −T
r
c

c

Q′
(

1 + T rc
c

)
Q
(

1 + T rc
c

) =
η

1 + η

T rc
T rc − d

, (10)

where η > 0 again is the Lagrangian multiplier associated with the revenue constraint.

We can therefore obtain the following proposition.

Proposition 3 (Ramsey regulation)

Consider a social planner who maximizes welfare subject to recovering the platform’s

costs, including a fixed cost K plus the per-transaction cost d > 0. The planner will

(i) choose an affine fee schedule given that sellers on the platform face GPD demand

with λ > 0 and σ < 2;

(ii) set the proportional component lower than that chosen by the platform, and also

set the fixed per-transaction component lower than that chosen by the platform when

demand is more convex than constant elasticity demand.

We note from (10) that when d > 0, the GPD demand requires the optimal
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solution

eT rc =
λd+ η

1+η
c

λd(σ − 1) + c
, (11)

where η
1+η

equals one in the monopoly platform’s solution. Given that σ− 1 < 1 and
η

1+η
≤ 1, (11) implies ∂eT rc /∂c < 0. Therefore, for both the platform and the social

planner, fees or taxes should be set so that the demand elasticity with regard to Tc is

higher for goods with low costs and values, but lower for goods with high costs and

values. This is achieved by setting a fixed per-transaction fee as part of the optimal

fee schedule.

Proposition 3 implies that for the class of GPD demand functions that rationalizes

a platform’s use of affine fee schedules, welfare is always highest when the social plan-

ner uses an affine fee schedule to maximize welfare subject to a break-even constraint.

This justifies using ad-valorem fees in this fully regulated setting.12 Because the plat-

form breaks even at the welfare optimum, the social planner’s choice of affine fee

schedule also maximizes consumer surplus subject to the same break-even constraint.

4 Robustness of affine fee schedules

In this section, we check the robustness of our findings and show that a platform

continues to do well with an affine fee schedule even if some of our major assumptions

or conditions do not hold exactly. The detailed analysis for the results discussed in

this section is given in an online appendix.

4.1 Alternative demand structures

We first consider the robustness of our results to the demand structure we have

assumed. There are two main elements to consider.

The first is that we have shown that when d > 0, the platform’s optimal fee

schedule is an affine function of the price of each good if and only if the distribution

of buyers’ benefits b ≥ 0 follows a GPD. While the GPD covers a broad family of

commonly used distributions, it is still interesting to explore how well an affine fee

12Note that provided the platform’s profit function is strictly concave in Qc, the planner’s optimal
fee schedule is an increasing affine function with slope less than unity if and only if sellers on the
platform face GPD demand with λ > 0 and σ < 2. In this case, the result in part (i) of Proposition
3 would parallel that in Proposition 2.
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schedule approximates the optimal fee schedule under alternative distributions. We

do this in Section 4.1.1.

A more fundamental demand assumption in our framework is the multiplicative

scaling parametrization of demand. The requires that the willingness to pay of all

types of buyers is assumed to grow proportionally with the cost of the good c. In

Section 4.1.2, we consider how well an affine fee schedule approximates the optimal

fee schedule when demand is subject to random variation across goods.

4.1.1 Non-GPD demand functions

We consider alternative demand functions such that buyers’ benefits (i.e., b ≥ 0)

follow an alternative distribution rather than a GPD. The platform does not know the

true distribution, but rather continues to assume that demand takes the GPD form.

In this case, we show in the online appendix that while the affine fee schedule is no

longer optimal, it is nevertheless very close to being optimal for the full range of goods.

This result is driven by a well-known empirical regularity that the GPD is a good

proxy for the upper tail of other distributions. In the statistics literature, the extreme

value theory shows that under some mild regularity conditions, the distribution of

a random variable conditional on it being above a certain threshold converges to a

GPD asymptotically. Therefore, the GPD approximation is able to offer an affine fee

schedule very close to the optimal fee schedule. The better the GPD proxies for the

true distribution, the closer the affine fee schedule is to the first best.

Two quantitative exercises are used to highlight the results. In each exercise, we

fit a GPD to data generated by a truncated normal distribution, for which the best

fitted GPD implies an optimal affine fee that matches the fee used by Amazon (i.e.,

$1.35+15% shown in Table 1). In the first exercise, we show the GPD proxies very

well the 75% tail of the truncated normal distribution, and as a result, the platform

achieves more than 99.7% of the maximal profit it would obtain for each good if it

knew the true truncated normal distribution. In the second exercise, we find the

GPD does not proxy quite as well the 25% tail of the truncated normal distribution.

However, in terms of profit, the GPD approximation still performs well, which allows

the platform to achieve 90-95% of the maximal profits for goods below $10, 95-99%

for goods between $10 and $60, and more than 99% for goods above $60. These

results are robust to the use of other standard distributions.
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The analysis discussed so far assumes the platform does not know the true demand

but approximates it with GPD demand, showing this approximation does not lead to

much loss in the platform’s profit. Alternatively, we can also consider a scenario in

which the platform knows the true non-GPD demand. In this case, the same quan-

titative exercises above reveal that the optimal fee schedule remains approximately

linear. Aside from the fact non-GPD demand can be approximated by GPD demand,

this also reflects that d is relatively small. We know from Proposition 1, that a pro-

portional fee is optimal for general (non-GPD) demand functions when d = 0, and

this should remain approximately true when d > 0 is small.

4.1.2 Random variation in demand

It is straightforward to show that all our existing results in Section 3 continue to hold

even if there are random multiplicative and additive shocks to demand. Given our

multiplicative scaling of demand, such shocks do not change the elasticity or shape of

demand, and so are irrelevant to the determination of the optimal fee schedule. The

more interesting case arises when different goods’ demands can come from distribu-

tions that have different means or different price elasticities. We consider both cases

in this section.

� Random variation in the GPD mean

We first study what happens when each good has GPD demand but is generated

from a distribution that has a different mean value centered around some common

mean. This allows goods with the same cost to have their values independently

determined—a good that draws a high mean of b has higher value than another that

has a low mean of b.

Suppose the platform faces GPD demand Qc =
(
1 + λ(σ − 1)Tc

c

) 1
1−σ . However,

the mean of the GPD, E [b] = 1
λ(2−σ)

, is now a random variable. To be specific, we

assume that

λ =
1

1

λ̂
+ (2− σ) ε

,

where λ̂ and σ are fixed numbers but ε is an i.i.d. random variable with mean zero

drawn for each good. Then for any particular good with realization λ, we have

E [b] =
1

λ (2− σ)
=

1

λ̂ (2− σ)
+ ε.
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Also, given that d is typically small, we focus on the simpler case in which d = 0.

We then compare the profits between two scenarios: (i) the platform ignores the

random noise but rather assumes that the GPD has a fixed mean equal to 1

λ̂(2−σ)

for each good c, (ii) the platform has perfect information and knows the realization

of λ for each good c. Denoting the optimal profit for the two scenarios, π0
c and π1

c

respectively, we can compute that

π0
c

π1
c

≈ 1− 1

2
λ̂2(2− σ)3E

[
ε2
]
. (12)

Note that π0
c

π1
c
< 1 given that σ < 2 and π0

c

π1
c

= 1 when E [ε2] = 0. Also, π0
c

π1
c

decreases in

E [ε2] , the variance of the noise term, and increases in σ, the curvature of the inverse

demand function. Because the ratio of π0
c

π1
c

is independent of c, the same ratio holds

for comparing the platform’s total profits.

With some commonly used demand functions within the GPD class, we can show

the profit loss tends to be small under a reasonable dispersion of the noise. Take the

Amazon example. The fee used by Amazon (i.e., 15%) implies the mean of E [b] , that

is 1

λ̂(2−σ)
= 0.176 . If we consider linear demand where σ = 0, (12) implies that as long

as the standard deviation of E [b] is smaller than 0.056, the platform earns more than

90% of the optimal profit by sticking to the simple 15% proportional fee. Moreover,

for the exponential demand where σ = 1, as long as the standard deviation of E [b]

is smaller than 0.079, the platform earns more than 90% of the optimal profit with

the 15% proportional fee. In fact, as suggested by (12), such a threshold standard

deviation of E [b] increases monotonically in σ.

Note that the profit ratio calculated in (12) is a conservative estimate in the sense

that we assumed the platform continues to use the 15% fee that is optimal when

E [b] is constant rather than choosing the best affine fee schedule taking the random

variation of E [b] into account.

� Random variation in the demand elasticity

In this case, we allow that there is random variation in the price elasticity of

seller demand which is independent of the costs of goods. Specifically, we consider

the GPD demand with σ = 1 + 1
λ

and λ > 1, so that sellers on the platform face a

constant-elasticity demand Qc = (1 + Tc
c

)−λ. We assume the demand elasticity λ is a
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random variable,

λ = λ̂+ ε,

where λ̂ is the mean of λ and ε is defined as before.

Using the same approach as above, we can show that the profit ratio is

π0
c

π1
c

≈
1 + 1

2

(
ln λ̂

λ̂−1

)2

E [ε2]

1 + 1
2

((
ln λ̂

λ̂−1

)2

+ 1

λ̂−1
− 1

λ̂

)
E [ε2]

. (13)

Again, the profit loss is small under a reasonable dispersion of the noise. For example,

in this case, the fee used by Amazon (i.e., 15%) implies λ̂ = 6.667. Then (13) implies

that as long as the standard deviation of λ is smaller than 3.073, the platform earns

more than 90% of the optimal profit.

4.2 Sellers’ market power

Returning to our GPD demand formulation without random variation, we now relax

another important assumption in our analysis, that sellers compete à la Bertrand. In

a setting where sellers have market power, we explore two questions. First, how well

does our affine fee schedule in (6), referred to hereafter as the “Bertrand fee schedule”,

perform compared to the optimal affine fee schedule? Second, more generally, how

well does this Bertrand fee schedule perform compared to the optimal (non-linear)

fee schedule?

To address these questions, we suppose sellers on the platform are identical Cournot

competitors with nc ≥ 1 such sellers for each good c. Note our formulation includes

the most extreme alternative to Bertrand competition, the case in which each seller

is a local monopolist. In contrast to the situation with Bertrand competition among

sellers, the platform now faces a double marginalization problem. Nevertheless, we

find that under GPD demand, the Bertrand fee schedule continues to perform well.

First, we show without information on each good’s cost, the platform can continue

to use the Bertrand fee schedule and earn a higher profit than if it knew the cost of

each good and set the optimal per-transaction fee for each good. This is because

the Bertrand fee schedule not only achieves the same benefits of price discrimination

but also mitigates the double marginalization problem associated with sellers’ market
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power, a result aligned with the findings of Shy and Wang (2011), Foros et. al. (2014),

Gaudin and White (2014a) and Johnson (2015).

Second, we show that while the Bertrand fee schedule is not necessarily the optimal

affine fee for all GPD demands, it is nonetheless very close to being optimal. For this

exercise we assume d = 0 so we can derive general results that do not depend on the

distribution of c. We consider three types of demand faced by sellers. For constant

elasticity demand, the Bertrand fee schedule is indeed the optimal affine fee schedule.

For exponential demand, provided the percentage fee in the Bertrand fee schedule is

less than 50% (which requires λ > 1), then the Bertrand fee schedule achieves 98.5%

of the profit that is achievable under the optimal affine fee schedule when nc = 1 (the

monopoly seller case), and this percentage converges to 100% as nc becomes large.

For linear demand, the same criteria requires λ > 0.5, in which case the Bertrand fee

schedules achieves more than 97.5% of the profit under the optimal affine fee schedule

when nc = 1, and again, an even higher percentage as nc increases. We summarize

our main findings in the following proposition.

Proposition 4 (The Bertrand fee schedule and seller market power)

Assume that the demand functions for sellers on the platform belong to the generalized

Pareto class with λ > 0 and σ < 2, and that for each good c there are nc ≥ 1 identical

sellers that set quantities. Then we have the following results:

(i) the platform obtains a higher profit using the Bertrand fee schedule than if it sets

the optimal per-transaction fee for each good;

(ii) if sellers face constant elasticity demand (σ = 1 + 1
λ

and λ > 1) and d = 0, the

Bertrand fee schedule is the optimal affine fee schedule;

(iii) if sellers face exponential demand (σ = 1), λ > 1 and d = 0, the Bertrand

fee schedule can recover more than 98.5% of the profit under the optimal affine fee

schedule;

(iv) if sellers face linear demand (σ = 0), λ > 0.5 and d = 0, the Bertrand fee schedule

can recover more than 97.5% of the profit under the optimal affine fee schedule.

Proposition 4 is a powerful result since in reality a platform typically deals with

many categories of goods. Each of the categories could have hundreds or even thou-

sands of different goods, so it seems unrealistic to assume the platform knows the

cost c or the exact nature of competition for each good. Using the simple Bertrand
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fee schedule in (6) allows the platform to earn the highest possible profits in case

of competitive sellers, while achieving almost the same profit as the optimal affine

fee schedule in the presence of double marginalization. Overall, from this result, we

expect that the loss from using the Bertrand fee schedule compared to the optimal

affine fee schedule is small.

More generally, when d > 0 or if we want to consider a non-linear fee schedule

rather than just an affine fee schedule, the analysis becomes more complicated and

depends on the distribution of c, the value of d, and the GPD demand parameters.

To proceed, we assume sellers face constant elasticity demand. We obtain the values

of d and λ by matching the implied Bertrand fee schedule to Amazon’s fee schedule

for DVD sales from Table 1. We obtain an estimated distribution of c by fitting a

log-normal distribution to the actual distribution of sales obtained from sales ranks

of DVDs sold on Amazon. We assume each seller is a monopolist (i.e., nc = 1), the

most extreme alternative to Bertrand competition, which provides us with the most

conservative results.

With these assumptions, we find the platform obtains a profit of 0.383 with a

fixed per-transaction fee (i.e., without any price discrimination). If the platform

could observe each different good sold by the sellers, it could do better setting the

per-transaction fee that is optimal for each good c. This increases its profit by 17.7%

to 0.457, which represents the gain due to price discrimination. Consistent with our

results in Proposition 4 above, we find that the benefits of price discrimination can be

obtained by using the Bertrand fee schedule, which does not require any information

on the values of c and has the added benefit of mitigating double marginalization.

Indeed, the platform can increase its profit to 0.537, or a further 16.3%, by using

the Bertrand fee schedule. The Bertrand fee schedule represents a 33.8% increase in

profit compared to relying on a fixed per-transaction fee. Taking account of the fact

sellers are monopolists and the particular distribution of c, the platform can increase

its profit by a further 1.5% moving to the optimal affine fee schedule.

Finally, we obtain the platform’s profit for the optimal non-linear fee schedule,

which we obtain by solving for the optimal polynomial fee schedule of degree k,

starting with k = 1 (the affine fee schedule) and considering higher and higher k

until the platform’s profit no longer increases.13 Compared to the optimal affine fee

13A more detailed description of the procedure and the resulting optimal fee schedule is given in
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schedule, moving to the optimal non-linear fee schedule only increases the platform’s

profit by a further 1.3%. The results are summarized in Table 2. The table shows

similar (indeed, even stronger) results are obtained from repeating the exercise with

linear demand.

In summary, very little is lost from restricting fee schedules to affine fee sched-

ules or indeed the Bertrand fee schedule. In case of constant elasticity demand, the

platform can get 97.2% and 98.7% of the maximal profit from fee schedules using

the Bertrand fee schedule and the optimal affine fee schedule respectively. For lin-

ear demand, the same percentages are 99.6% and 99.9% respectively. This suggests

that even if sellers have market power, there is little to be gained from using a more

complicated optimal non-linear fee schedule compared to the Bertrand fee schedule.

Table 2. Profitability of different types of fees

Const-elasticity demand Linear demand

Fee schedule Profit Profit gain (%) Profit Profit gain (%)

Fixed per-transaction fee 0.383 0.632

Per-transaction fee varying by good 0.457 17.7% 0.966 42.4%

Bertrand fee schedule 0.537 16.3% 1.039 7.2%

Optimal affine fee schedule 0.545 1.5% 1.041 0.3%

Optimal fee schedule 0.553 1.3% 1.043 0.1%

Total profit gain (%) 36.7% 50.0%

5 Concluding remarks

In this paper, we investigate a puzzle and possible policy concern. Anecdotal evi-

dence suggests that usually there is no obvious relationship between the value of an

exchange and the cost of the intermediation. So why do platforms often charge a fee

proportional to the value of the exchange?

We argue that price discrimination provides a natural explanation for the widespread

use of ad-valorem fees. A platform has to deal with trade in multiple goods that vary

widely in costs and valuations. If only a fixed per-transaction fee is used, a dispro-

portionate amount will be charged to the low-cost and low-value goods, resulting in

the online appendix.
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their price elasticity of demand being too high, while high-cost and high-value goods

will end up with their price elasticity of demand being too low. Ad-valorem fees and

taxes ensure efficient revenue extraction for platforms and planners, and by the same

logic, for tax authorities.

We show when platforms face costs of handling each transaction, the use of an

affine fee schedule (a proportional fee plus a fixed per-transaction fee) is optimal or

nearly optimal for the platform, allowing it to achieve efficient price discrimination.

We also show such an affine fee schedule would be chosen by a planner who wants

to maximize social welfare (or consumer surplus) subject to the platform covering its

costs including fixed costs.

The idea that ad-valorem fees provide a simple and efficient way for price discrim-

ination is likely to apply more generally. Besides the two examples given in the paper,

online marketplaces and payment cards, there are many other potential applications

of our theory including to auction houses, booking platforms, employment agencies,

insurance brokers, investment banks, real estate agencies, etc. It would be interesting

to explore the extent to which our theory applies to these different markets.

Our theory can usefully be extended in several directions. First, one could use our

setting to evaluate the welfare effects of banning ad-valorem fees in an unregulated

environment in which the platform remains free to set the level of its fixed per-

transaction fee. We explore this in Wang and Wright (2016). Second, it would be

interesting to consider whether ad-valorem fees are justified from a Mirrlees-Atkinson-

Stiglitz perspective, rather than the Ramsey perspective we took. A benefit of ad-

valorem fees from this perspective is that they track the income of the individual

purchasing (in case there is tax evasion that needs to be compensated for with sales

taxes, for example, or tax rates would otherwise be too low). Third, one could consider

settings in which there is a role for more complicated fee mechanisms. For example,

we sometimes observe platforms that set caps (e.g. eBay) or lower percentage rates

for transactions that go beyond some high values (e.g. Amazon for major appliances).

A possible explanation that could be explored using our alternative theory of demand

in Appendix A is that the benefit of using the platform service is proportional to the

price of the goods traded only up to some point, but after that the benefit is bounded

or does not increase as fast with the price of goods reflecting that other alternatives

become viable. Finally, it would be useful to extend our analysis to cover the case of

24



competing platforms, to understand whether inter-platform competition changes the

incentives to use ad-valorem fees in any way.
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Appendix A: Alternative trading environment

In this appendix, we consider an alternative setting which gives rise to the same

demand specification (1) as in Section 2 and for which the results in the rest of the
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paper continue to hold. Suppose buyers can buy from sellers through an efficient

trading environment which involves a “tax” or through an alternative less efficient

trading environment. In case of a tax authority, the alternative trading environment

may be to trade in the underground economy, thereby avoiding any tax. In the

case of a platform, the alternative trading environment may be trading directly or

through a different means (e.g., from the seller’s own website rather than through

eBay or Amazon, or using cash instead of Visa or MasterCard payment cards), thereby

avoiding any platform fees.

Different goods within a market are indexed by c. For good c, sellers all incur

a unit cost c to provide the good, and buyers all value the good at vc > c, which

is assumed sufficiently large such that all buyers want to buy one unit of the good

regardless of the trading environment. Note the buyers’ valuation for each different

good need not be scaled by c. There are assumed to be sufficient identical sellers so

that there is homogenous Bertrand competition in both trading environments. Since

there are no fees involved, the price sellers set in the alternative trading environment

will exactly equal c.

Buyers purchasing through the efficient trading environment avoid an inconve-

nience or loss that is expected when purchasing through the alternative means, an

expected loss which is equal to bc, where b ≥ 0. Buyers have heterogenous valuations

of this loss, so draw b from a distribution as in the model in Section 2. Thus, the

key assumption in this alternative setting is that the loss from using the less effi-

cient trading environment is proportional to the cost or price of the goods traded. In

case of a tax collected by authorities, the assumption requires that the expected loss

from making a trade at the price c in the underground economy is proportional to c,

perhaps reflecting the amount at risk to each party in any such trade. In case of a

payment card platform such as that offered by Visa, the assumption requires that the

risk and inconvenience of having to use cash for a payment equal to c is proportional

to c, reflecting the opportunity cost of the cash involved and the risk of theft.

Suppose taxes (or platform fees) are only on the seller side. Thus, when a trans-

action takes place, a buyer of good c that draws b and faces a price for good c through

the efficient trading environment of pc receives a surplus of vc − pc using the efficient

trading environment and vc− (1 + b) c using the inefficient trading environment. The

assumptions on 1 + b and other parameters then follow as in Section 2. The number
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of transactions on the platform Qc for a particular good c is the measure of buyers

whose surplus from using the efficient trading environment is greater than using the

alternative, i.e., Pr
(
1 + b ≥ pc

c

)
, which gives rise to the same demand function (1) as

in Section 2. The rest of the analysis follows as before.

Appendix B: Proof of Propositions

Proof of Proposition 1. Equations (2) and (3) provide necessary conditions for

maximization. We show here that under our assumption, that the revenue function

Rc is strictly concave in either tax Tc or quantity Qc, (2) and (3) also pin down the

unique solution for the maximization problem.

(i) If the revenue function Rc is strictly concave in tax Tc, there is a unique T ∗c

that satisfies (2), which maximizes the revenue. If Rc is strictly concave in quantity

Qc, there is a unique Q∗c that satisfies ∂Rc
∂Qc

= 0, which maximizes the revenue. Because
∂Rc
∂Tc

= ∂Rc
∂Qc

∂Qc
∂Tc

and ∂Qc
∂Tc

< 0, T ∗c (corresponding to Q∗c) is the only solution that satisfies

(2). Therefore, in either case, (2) pins down the global maximum.

(ii) The welfare maximization problem is

max
∑
c∈C

gcWc −K s.t.
∑
c∈C

gcRc ≥ K.

First, we consider the case where the revenue function Rc is strictly concave in

Tc. In this case, the platform chooses the vector of taxes Tc, one for each good,

to maximize welfare. Given that the objective function Wc =
∫∞
Tc
Q
(
1 + t

c

)
dt +

TcQ
(
1 + Tc

c

)
is strictly declining in Tc for each good, the objective function

∑
c∈C gcWc

is quasi-concave in Tc. Also, because the revenue function Rc is strictly concave in

Tc, the weighted sum
∑

c∈C gcRc is strictly concave in Tc. As a result, according to

the Kuhn-Tucker maximum theorem, the first-order condition given by (3) pins down

the unique T rc solving the maximization problem (see Arrow and Enthoven, 1961).

Second, we consider the case where the revenue function Rc is strictly concave

in quantity Qc. In this case, the platform chooses the vector of quantities Qc, one

for each good, to maximize welfare. We can rewrite the objective function as Wc =∫ Qc
0

Tc(x)dx =
∫ Qc

0
c[F−1(1 − x) − 1]dx. Note that Wc is strictly concave in Qc for

each good, so the objective function
∑

c∈C gcWc is strictly concave in Qc. Also, given
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the revenue function Rc is strictly concave in Qc, the weighted sum
∑

c∈C gcRc is

strictly concave in Qc. As a result, the Kuhn-Tucker maximum theorem implies that

there is a unique Qr
c solving the maximization problem. Again, because ∂Qc

∂Tc
< 0, T rc

(corresponding to Qr
c) is the only solution that satisfies (3). Therefore, (3) pins down

the global maximum.

(iii) Finally, note that the value of ω solving (3) will be lower than that solving

(2). To see this, we first consider the case where the revenue function Rc is strictly

concave in Tc. Denote the solution to (2) as T ∗c and ω∗ = T ∗
c

c
, we have ∂R

∂Tc
|Tc=T ∗

c
=

Q (1 + ω∗) + ω∗Q′ (1 + ω∗) = 0. Denote the solution to (3) as T rc and ωr = T rc
c

.

Given that η > 0, (3) implies that ∂R
∂Tc
|Tc=T rc = Q (1 + ωr) +ωrQ′ (1 + ωr) > 0. Given

that ∂2R
∂T 2

c
< 0, we have ωr < ω∗, and so ωr

1+ωr
< ω∗

1+ω∗ . Similarly, for the case where

the revenue function Rc is strictly concave in Qc, note that the welfare maximizing

quantity is greater than the revenue maximizing one (i.e., Qr
c > Q∗c). Accordingly, we

again have ωr < ω∗, and so ωr

1+ωr
< ω∗

1+ω∗ .

Proof of Proposition 2. We proceed in four steps.

(1) We first show the result in the “if” direction. Suppose F has an affine inverse

hazard rate ρ (x) = ρ0 + ρ1x, where the hazard rate h satisfies h′ (x) + h2 (x) > 0 for

x ∈ [1, 1 + b̄]. Given F ′ (1) > 0 we have ρ0 + ρ1 > 0. The property h′ (x) + h2 (x) > 0

implies ρ1 < 1. If we can observe c and choose a corresponding T ∗c , the first-order

condition for optimality can be written as

T ∗c − d
c

= −
Q
(

1 + T ∗
c

c

)
Q′
(

1 + T ∗
c

c

) . (14)

(That T ∗c satisfying this gives the global maximum when F has an affine inverse

hazard rate is shown in step 4 below.) Because the right-hand-side of (14) is the

inverse hazard rate for F evaluated at 1 + T ∗c /c, we must have

T ∗c =
d

1− ρ1

+
ρ0 + ρ1

1− ρ1

c. (15)

This can be implemented by the affine fee schedule

T (pc) =
d

1 + ρ0

+
ρ0 + ρ1

1 + ρ0

pc, (16)
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where ρ0 + ρ1 > 0 and ρ1 < 1 implies ρ0 > −1, so that the intercept is positive and

the slope is between 0 and 1. Note implementation is possible as sellers of type c

have to cover their costs c+ T (pc) and so equilibrium prices for good c are given by

the lowest pc such that pc ≥ c+ T (pc). The equilibrium price is characterized by the

unique solution to pc = c+T (pc) for each good c, which is pc = d+c(1+ρ0)
1−ρ1 . Given (16),

the fee set for good c will indeed be (15) as required.

(2) We next consider the “only if” part of the proof. Without loss of generality,

suppose we start with (16) being the optimal fee schedule, with ρ0 + ρ1 > 0 and

ρ1 < 1. This implies the equilibrium price for good c will be given by pc = d+c(1+ρ0)
1−ρ1 .

Given the slope of the fee schedule is between 0 and 1, a seller cannot make more

profit by lowering its price below this level to enjoy a lower fee. Substituting this

price into (16) implies the optimal fee for good c is given by (15). Substituting this

into (14) implies

ρ0 + ρ1

(
1 + d

c

)
1− ρ1

= −
Q
(

1 +
ρ0+ρ1+ d

c

1−ρ1

)
Q′
(

1 +
ρ0+ρ1+ d

c

1−ρ1

) , (17)

which must hold for all values of c in the support of G.

Given we assume c takes on only a finite number of values, there may be mul-

tiple fee schedules that can implement the optimal outcome implied by (17) for the

platform. Provided they satisfy optimality around the prices implied by these values

of c, there may be some flexibility for the fee schedule for other prices. If this is

the case, we assume that the platform will choose the fee schedule from among the

multiple fee schedules that remains optimal for as many other values of c between

cL and cH (i.e., which are not in the support of G). Thus, by optimality we rule

out a weakly dominated schedule—one that produces the same profit for the given

distribution of c but would be lower in case c takes on some other values outside of

G. Given this requirement, optimality can only hold if the inverse hazard rate (the

function −Q (·) /Q′ (·)) is the increasing affine function with intercept ρ0 and slope

ρ1, where h′ (x) + h2 (x) > 0 follows from ρ1 < 1.

(3) The equivalence between (i), (ii) and (iii) is shown as follows. Without loss

of generality, the requirement that the inverse hazard rate be linear is equivalent to

requiring
F ′ (x)

1− F (x)
=

λ

1 + λ (σ − 1) (x− 1)
(18)
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for some constant parameters λ and σ. Evaluating (18) at x = 1, implies that λ > 0

and σ < 2 given the requirements that ρ0 +ρ1 > 0 and ρ1 < 1. Solving the differential

equation, the solution requires (7), with the special case F (x) = 1 − e−λ(x−1) when

σ → 1.

Accordingly, the demand faced by sellers is the broad class of demand functions

that has a constant curvature of inverse demand σ. It is specified by (8), which

includes linear demand (σ = 0) and constant-elasticity demand (σ = 1+1/λ), as well

as exponential demand (σ → 1). The demand faced by the platform for good c is

given by

Qc (Tc) = 1− F
(

1 +
Tc
c

)
=

(
1 +

λ (σ − 1)Tc
c

) 1
1−σ

, (19)

which also belongs to this constant-curvature class of inverse demand functions,

though it does not cover the full class (e.g., the platform does not face a constant-

elasticity demand).

Given the platform demand function (19), the optimal fee satisfying (14) is

T ∗c =
λd+ c

λ (2− σ)
. (20)

Substituting pc = c + T ∗c , the optimal fee can be written as (6), which is equivalent

to the affine fee schedule (16) derived above with ρ0 = 1− σ + 1/λ and ρ1 = σ − 1.

(4) We can verify that T ∗c satisfying (20) indeed yields the maximal profit for

the class of GPD demand functions identified by (19). Note that the assumption

b > d/cL ensures that T ∗c satisfying (20) is always an interior solution. Also, given

σ < 2, the GPD demand implies that the profit function, denoted by Πc, is strictly

concave in Qc, so there is a unique Q∗c that satisfies ∂Πc
∂Qc

= 0, which maximizes the

profit. Because ∂Πc
∂Tc

= ∂Πc
∂Qc

∂Qc
∂Tc

and ∂Qc
∂Tc

< 0, T ∗c (corresponding to Q∗c) is the only

solution that satisfies (20). Therefore, (20) pins down the unique global maximum of

Πc.

Proof of Proposition 3. (i) The first-order condition for the social planner’s

problem (10) can be written as

1 + η

η

(T rc − d)

c
= −

Q
(

1 + T rc
c

)
Q′
(

1 + T rc
c

) . (21)
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Again, the right-hand-side of (21) is the inverse hazard rate for F evaluated at 1 +

T rc /c. Therefore, the first-order condition implies an affine fee schedule given that

the demand functions for sellers belong to the GPD class with λ > 0 and σ < 2.

Accordingly, the optimal regulated platform fee is

T rc =
(1 + η) d

1 + η (2− σ)
+

ηc

λ[1 + η (2− σ)]
, (22)

and the corresponding optimal affine fee schedule is

T (pc) =
(1 + η)λd

λ+ [1 + (2− σ)λ]η
+

ηpc
λ+ [1 + (2− σ)λ]η

, (23)

with the ad-valorem term η
λ+(1+(2−σ)λ)η

∈ (0, 1) given η > 0, λ > 0 and σ < 2.

To verify that T rc satisfying (22) indeed yields the maximal welfare, note that the

assumption b > d/cL ensures that T rc satisfying (22) is always an interior solution.

We can verify that the welfare function is strictly concave in Qc. Also, given σ < 2,

the GPD demand implies that the profit function is also strictly concave in Qc. Hence,

there is a unique Qr
c solving the welfare maximization problem subject to the break

even constraint. Again, given ∂Qc
∂Tc

< 0, T rc (corresponding to Qr
c) is the only solution

that satisfies (22).

(ii) Comparing the platform’s optimal fee schedule (6) with that set by the social

planner (23), we find that the proportional component chosen by the planner is always

lower than that chosen by the platform given η > 0, λ > 0 and σ < 2. The fixed

per-transaction component chosen by the social planner is also lower if and only if

σ > 1 + 1/λ.
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