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Abstract

The classic competitive bottleneck setting of Armstrong (2006) provides a useful way to

understand how despite apparent competition between platforms to attract buyers who only

join one of the platforms, they may not compete at all for sellers on the other side who potentially

want to reach buyers on all platforms. We extend this classic insight to more general settings

which take into account the pass-through of platform fees through seller pricing and allow for a

wide range of platform design choices. An equivalence result between the equilibrium outcome

and a “seller-excluded” welfare benchmark shows how such platforms may tend to make design

choices that are distorted against sellers’ interests. We apply this equivalence result to show

that, compared to choices that would maximize total welfare, platforms set excessive commission

fee levels, excessive first-party entry and self-preferencing, insufficient platform investment, and

excessively stringent policies aimed at limiting sellers from monetizing from buyers outside the

platform. A key condition for the equivalence result is the absence of spillovers across platforms

with respect to their design choices. In settings where such spillovers arise, we identify conditions

under which our welfare results continue to apply. Several features of mobile app platforms fit

our framework, suggesting that such platforms’ design choices may be biased against sellers’

interests in a way that is harmful to overall welfare.

1 Introduction

Concerns around the gatekeeper role of big-tech platforms in controlling the access of developers,

suppliers and advertisers to end consumers has motivated major new legislation around the world.

In Europe, the Digital Markets Act will come into force in 2024, in China the Anti-Monopoly

commission released new Anti-Monopoly Guidelines for the Platform Economy in 2021, and in the

U.S. fives acts were proposed in 2021, including the Open App Markets Act and the American

Innovation and Choice Online Act.

Given the digital services in question are sometimes dominated by a single firm (Google for

search and for browsers, Meta for social networks, and Amazon for ecommerce, in certain regions),

this is perhaps not surprising. But in other cases these issues have been raised despite there being

more than one large platform offering a similar service. A case in point is mobile app platforms,

which enable millions of developers to distribute their apps to the billions of consumers that use
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mobile devices globally. In this case there are two major players: Apple, with iOS and the App

Store, and Google, with Android and the Play Store. Yet these platforms are often cited as the

main examples of gatekeepers, with the DMA and other proposed laws applying to them. This

raises important questions: in what way are these apparently competing platforms, gatekeepers

still? If they are, what types of regulations may be most effective for these types of platforms?

Should the new laws also apply to them?

One economic theory that may be usefully applied to such situations is that of “competitive

bottlenecks”, introduced in Armstrong (2006), and further developed in Armstrong and Wright

(2007) and Belleflamme and Peitz (2019a). It considers the classic competitive bottleneck setting

of two competing platforms where all buyers have to singlehome (they can only join one of the two

platforms) and all sellers (e.g., suppliers or developers) are free to multihome (they can join either

or both platforms). In such settings, each seller’s decision to join a given platform is strategically

independent of its decision to join the other platform. As a consequence of such independence,

despite the fact platforms may compete for buyers, they act as gatekeepers in selling access to

these buyers, not competing at all to attract sellers. This results in an equilibrium outcome where

each platform’s fees charged to sellers maximize buyers’ surplus and platform profit, ignoring the

surplus of the sellers, leading platforms to set fees to sellers as if each platform is a monopoly on

the seller side.

The competitive bottleneck insight has been appreciated and reproduced in various policy doc-

uments (e.g., Belleflamme and Peitz (2019a) and the references therein), as well as being applied to

different market sectors and used in various empirical models (as surveyed in the next section). But

surprisingly, apart from in Armstrong (2006) initial setting, there are few welfare results, and most

of the analysis of this setting has been developed based on certain key assumptions, assumptions

that don’t fit well marketplace applications such as mobile app platforms. For instance, Armstrong

(2006) and most of the subsequent literature assumes that the fees charged on both sides are mem-

bership fees, there is no pricing by sellers to buyers, and as a result there is no pass through of

the fees platforms charge sellers back to buyers. With the exception of Armstrong (2006), these

existing works focus on predicting the equilibrium structure of platform membership fees across

the two sides rather than welfare implications. Moreover, policymaker interest goes beyond fee

setting, with policymakers raising concerns about other platform choices as well (Crémer et al.,

2019; Scott Morton et al., 2019; Furman et al., 2019).1

To address these gaps, in this paper, we (i) consider a general framework of a competitive

setting, and (ii) develop welfare results in this general setting. The framework takes into account

the nature of buyer-seller interactions and that platforms make multi-dimensional choices over a

range of design choices in addition to seller-side fees. We illustrate this with examples where the

platforms’ instruments include commission fees, investments, choosing whether to enter to compete

with sellers by offering their own products and whether to steer buyers towards such products,

policies that limit the ability of buyers and sellers to bypass the platform (i.e., disintermediation),

and app tracking policies in the case of mobile app platforms. The framework can also incorporate

monopolistic or competing sellers setting prices to buyers, and allows for pass-through of platform

1For instance, policymakers are concerned platforms enter with their own products and steer buyers towards
them, and that they prevent sellers from directing their customers to cheaper channels.
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fees from sellers to buyers. We illustrate the ability of the framework to capture such settings with

some micro-founded applications.

Using this framework, we provide a simple way to operationalize the welfare effects of com-

petitive bottleneck settings. We define a benchmark based on the joint surplus of buyers and

the profit of the platforms without considering any surplus obtained by sellers. We call this the

“seller-excluded” welfare benchmark. In our baseline setting, the equilibrium outcome is equiva-

lent to the outcome maximizing this seller-excluded welfare. This equivalence result allows us to

readily obtain welfare properties based on how various platform instruments affect seller surplus.

Specifically, if sellers are worse off as a result of higher levels of some platform instrument, then the

equilibrium that arises from platform “competition” will exhibit excessive levels of that instrument

from a welfare perspective. Thus, we find in the competitive bottleneck settings, platforms choose

excessive commission fee levels, excessive first-party entry, excessive self-preferencing, insufficient

investment, excessive limitations on disintermediation by sellers, and excessively stringent app

tracking policies.

We then extend the framework to consider situations where the equivalence result breaks down.

A key reason why platforms’ choice of instruments can deviate from the seller-excluded outcome is

if there are spillovers across platforms. We decompose these into two fundamental types: spillovers

from a platform’s choice of seller-side instruments on the utility buyers obtain on the other platform

and on the other platform’s revenue (holding buyer-side market shares constant). We explain how

such spillovers naturally arise when there are within-seller economies of scale (e.g., sellers face fixed

entry costs), within-seller network effects (e.g., sellers’ products enjoy network effects), sellers set

uniform prices across the platforms (e.g., if platforms impose price-parity clauses), and when sellers

can shift transactions to a direct channel. Such utility and revenue spillovers break down the link

between the equilibrium levels and the seller-excluded outcome. This is because each individual

platform does not take into account the externalities of its choices on the rival platform’s revenue

and buyer utility, and indeed wants to distort its seller-side instruments to lower the rival platform’s

buyer utility so as to shift more demand to its own platform. We show how negative utility and

revenue spillovers can lead to an additional source of distortion of platforms’ choices of instruments

away from efficient levels. In addition to such spillovers, we show how imposing constraints on

buyer-side monetization and allowing for myopic buyers can also cause the equivalence result to

break down, and provide conditions to sign welfare effects in these cases too.

We apply the lessons of our framework to the case of mobile app platforms.2 Even though in

this context the fees charged by platforms to developers can be constrained to some extent by each

platform taking into account how its fees may get partially passed through to consumers and thus

consumers’ choice of which platform to adopt, our result implies the platforms still do not compete

for developers or take into account their interests. This implies their choices of commissions, first-

party entry, self-preferencing, investment, prevention of disintemediation and limitations on app

tracking are distorted away from efficient levels, as discussed above. Moreover, the economics of

mobile app platforms suggest several negative utility and revenue spillovers arise, thus suggesting

2In addition to this application and the many existing applications of competitive bottleneck theory noted in
the next section, our framework can also be usefully applied to local Internet-providers, where consumers typically
only subscribe to one network but developers will pay for prioritized service across each of the local networks (see
Greenstein et al. (2016)).
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an additional source of distortion of their choices of these instruments away from efficient levels.

These distortions may be alleviated by stopping platforms from banning (or otherwise limiting)

alternative app stores and the direct downloading of apps on their operating systems. Doing

so would open up alternative ways for app developers to get around the bottleneck they face in

accessing consumers who are unique to a given platform. Such policy changes will be introduced

as part of Europe’s Digital Markets Act (DMA) and have been proposed in other jurisdictions as

well.

1.1 Related literature

A number of other works have built on Armstrong’s competitive bottleneck setting. Sticking to the

same structure of pricing as Armstrong (2006), with membership fees on both sides, Armstrong

and Wright (2007) formalize the condition for singlehoming to arise on one side and multihoming

on the other, rather than just assuming all users on one side (e.g., buyers) singlehome.3 They also

analyze the case that platforms can impose exclusivity on the side that would otherwise multihome

to explore how it can change results compared to the competitive bottleneck outcome. Hagiu (2009)

more explicitly takes into account seller competition but focuses on the case with membership fees

still.4 Other works have also examined how homing configurations affect the equilibrium outcome.

Belleflamme and Peitz (2019a) compare the surplus implications (on each side of users as well

as the total welfare) of the equilibrium in the two-sided singlehoming benchmark setting with

what happens in the competitive bottleneck setting, while allowing for partial multihoming on the

seller-side (i.e., not all sellers multihome) on the equilibrium path. Likewise, Bakos and Halaburda

(2020) start from the competitive bottleneck and two-sided singlehoming settings, showing that

multihoming on both sides weakens platforms’ incentive to cross-subsidize across the two sides of

the market. Reisinger (2014) focuses on an exogenous competitive-bottleneck homing specification

(singlehoming buyers and competing sellers) but allows for platforms to charge two-part tariffs on

each side. Tremblay et al. (2023) explores alternative homing assumptions including a competitive

bottleneck setting in a Cournot competition model.

Compared to this existing literature, we provide a more general framework to reconsider com-

petitive bottlenecks in. This framework allows for richer microfoundations such as sellers’ pricing,

pass-through of fees and entry decisions, and allows for platforms to choose multiple types of

seller-side fees and other platform design instruments. In addition, unlike this earlier literature, we

explicitly characterize how equilibrium platform fees and design choices are distorted away from

welfare maximizing outcomes. Some other recent works also explore distortions in platform design.

Teh (2022) considers how these distortions relate to the business model of a monopoly marketplace

platform, while Choi and Jeon (2023) consider distortions caused by ad-funded platforms.

In considering welfare results arising in the context of mobile app platforms and app developers,

our paper is related to the recent contributions by Etro (2023) and Jeon and Rey (2023). Etro

3This line of work contrasts with Rochet and Tirole (2003)’s framework of competing platforms. They focus
on platforms that charge transaction fees to both sides, and assume both buyers and sellers are free to multihome.
Recently, Teh et al. (2023), show that when multihoming buyers have strong enough preferences for using a particular
platform to complete a transaction, a conclusion similar to the classic competitive bottleneck insight can still emerge.

4Karle et al. (2020) go further to explain how competitive conditions among sellers shape market structure among
homogeneous competing platforms. In their setting, two competing sellers would never both multihome under their
equilibrium selection, so the competitive bottleneck insights that we focus on does not arise in their setting.
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(2023) considers a setup where platforms compete for singlehoming buyers via device prices and

charge sellers (i.e., developers) ad-valorem commissions, where sellers are free to multihome and

their participation decisions are independent across platforms. In his setting, sellers set their prices

under monopolistic competition, allowing for the pass-through of seller-side fees back to buyers. He

shows that competition through device prices results in the redistribution of commission revenues

back to buyers such that the equilibrium seller-side commissions turn out to maximize buyer

surplus.

Jeon and Rey (2023) consider an alternative setup where sellers need to incur a fixed cost to

develop apps before joining any platform, so that seller participation decisions across platform

are generally interdependent. They show that when the cost of porting apps to a new platform

is low (so that most sellers never singlehome — they either join no platform or multihoming on

both platforms), the platforms set commissions above the buyer-surplus maximizing benchmark.5

Intuitively, platforms fail to internalize the negative externality generated by a higher commission

on the entry of sellers on the rival platform. Our results are consistent with theirs. However, like

Etro, they do not characterize their outcome in terms of the seller-excluded outcome. Doing so

helps to understand more generally the drivers of fees (and other instrument choices) relative to

a total welfare benchmark, and to identify the more general utility and platform revenue spillover

conditions that explain distortions in equilibrium platform fees and other instruments.

The competitive bottleneck setting has been used to study many other applied settings in

recent years. Some of the more notable applications include Choi (2010) and Choi and Jeon (2021)

on tying; Hagiu and Ha laburda (2014) and Belleflamme and Peitz (2019b) on pricing disclosure;

Edelman and Wright (2015) on price coherence and price parity restrictions; Anderson and Coate

(2005) and the many subsequent works that build on their framework of media markets, and Hagiu

and Lee (2011) and Carroni et al. (2023) for exclusive content. Empirical applications include

Yellow Pages (Rysman, 2004), magazines (Kaiser and Wright, 2006; Song, 2021), and video game

consoles (Lee, 2013).

2 Model setup

Our environment generalizes Armstrong (2006)’s competitive bottleneck setting. There are m ≥ 2

platforms. To fix ideas, suppose buyers are the ones to singlehome. Buyers choose one of m

platforms to join (i.e. are restricted to singlehome) while sellers can choose to join any number of

platforms (e.g., none, one, two, ... , all m platforms) reflecting that they are free to multihome.6

Each platform i = {1, ...,m} charges a lump-sum membership fee to buyers, PBi , and also

chooses an n-dimensional “instrument vector” ai ∈ A ⊆ Rn. We allow the instrument vector to have

a general interpretation which allows for monetary fees, investment, and (possibly discrete) plat-

form design choices that affect buyers and/or sellers. For example, ai could be a three-dimensional

vector indicating the level of ad-valorem transaction fees (ri) and lump-sum membership fee (PSi )

charged to sellers, and the level of platform investment (Ii) on its marketplace that benefit buyers

5Hagiu (2009) also allows for seller economies of scale in joining platforms, but does not explore the welfare
implications of this feature.

6In Section 4.2, we discuss how our framework can accomodate situations where some sellers are restricted to
singlehoming.
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(e.g., increases the value to buyers of making a transaction) and/or sellers (e.g., by increasing the

value of transactions to buyers, it allows sellers to charge more); i.e.,

ai = (ri, P
S
i , Ii) ∈ A ⊆ [0, 1]× R+ × R+. (1)

To ensure well-defined maximization problems, we assume set A is compact.7 Restrictions on what

vector ai could capture will be clear below when we introduce additional functional assumptions.

Let a = (a1, ..., am) ∈ Am and PB = (PB1 , ..., P
B
m ) denote the profile of platform instrument vectors

and membership fees to buyers, where we use the bold form throughout the paper to denote profiles

of objects involving all m platforms.

� Buyers. Let s = (s1, ..., sm) ∈ [0, 1]m denote platforms’ buyer-side market share profile, with

each entry si ∈ [0, 1] being platform i’s market share of buyers, which is endogenously determined.

Let ε = (ε1, ..., εm) denote the idiosyncratic match values of a buyer with m platforms, which

measures buyer horizontal preference for platforms. Following the literature, we assume that

there is a continuum of heterogenous buyers (of measure one) and each buyer knows her vector of

matching values ε. From the perspective of the platforms, ε can be viewed as following some joint

cumulative distribution function (CDF) F (·).
Without imposing any particular microfoundations, we posit that each platform i’s net buyer

utility for each buyer is

Ui (a; s)− PBi + εi. (2)

Here, Ui is the gross utility buyers get from participating on platform i and interacting with sellers.

Typically, Ui depends on the mass of participating sellers on platform i and sellers’ decisions (e.g.,

their pricing and investment on platform i), both of which depend on the fee levels and design

choice of platforms i (as captured by ai in the instrument vector profile a) and the mass of buyers

on platform i due to cross-group network externalities (as measured by si in the market share

profile s). The presence of si in Ui also captures any potential same-side network effects on the

buyer side. These effects are captured by writing Ui as a function of (a, s) in general, rather

than just being a function of the measure of sellers joining platform i. This allows us to also

capture the possibility of Ui depending on a−i (instrument vectors of all platforms j 6= i) and s−i

(market shares of all platforms j 6= i) so as to capture possible spillovers across platforms, which

we illustrate with applications in Section 4.

On the buyer side, we assume single-homing and full market coverage: each buyer participates

in one and only one platform, so
∑m

i=1 si = 1. Then, the measure of buyers joining platform i is

expressed as

si = Pr

(
Ui − PBi + εi ≥ max

j 6=i

{
Uj − PBj + εj

})
, (3)

where the probability is based on the distribution F (·). CDF F (·) is continuously differentiable

and symmetric across the m platforms. This formulation is general enough to permit several

specifications commonly used in the literature, including the case of independent and identically

distributed (IID) shocks across platforms (Perloff and Salop, 1985), as well as alternative correlation

7Note that ai can include seller-side fee decisions of platforms, which are unbounded in principle. However, one
can bound the set of feasible fees by either introducing a “choke price” (above which no seller participates) or defining
a monopoly fee level (above which the platform profit is strictly decreasing). See, e.g., Quint (2014).
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structures such as the circular city model (Salop, 1979), the spokes model (Chen and Riordan,

2007), and the Hotelling model in case m = 2.

� Platforms. Given our general approach for modelling platform i’s instrument vector ai, we

do not explicitly model each of the platform’s sources of profit. Instead, we express each platform

i’s profit as

Πi =
(
PBi − c

)
si +Ri (a, s) , (4)

where c ≥ 0 is the per-buyer platform marginal cost and Ri is platform i’s “net revenue” or

“residual profit”, which captures everything else that is unrelated to profits from the buyer-side

membership fees.8 As an illustration, continuing from the example in (1), we have

Ri = ri × (Transaction revenue) + PSi × (Measure of sellers joining)− Investment Cost, (5)

where each of the items in the parentheses can, in general, depend on (a, s), i.e., fee levels, design

and investment choices, and the mass of buyers on each platform. Throughout, we assume functions

Ui and Ri are symmetric across all m platforms.

Notice that we have so far left the seller side payoffs and behavior unspecified. As will be illus-

trated in Section 2.2, the framework based on functions Ui and Ri can accommodate a wide range

of specifications on the seller side. We assume both functions Ui and Ri are continuous in (a, s).

We will provide some microfounded applications in Section 2.2 to unpack the corresponding Ui and

Ri functions in settings without platform spillovers, and will extend some of these applications to

settings with platform spillovers in Section 4.1. These applications show how the general forms

of Ui and Ri here can capture different microfounded settings of interest, and how a variety of

different platform instruments can be handled.

� Timing. We adopt the canonical timing in the two-sided market literature: (i) The platforms

set their buyer fee PBi and instrument vector ai simultaneously. (ii) Observing these fees and

instrument choices, buyers and sellers make their platform participation decisions; (iii) The on-

platform interaction between buyers and sellers unfolds according to the specified micro-foundation,

captured by the functions Ui and Ri.

The solution concept is symmetric Subgame Perfect Equilibrium. In particular, we assume the

outcomes in the equilibrium, in the seller-excluded benchmark, and in the total welfare benchmark

(to be defined below) all involve symmetric solutions with all platforms choosing the same PBi and

ai.

2.1 Discussion of modelling features

Before illustrating the framework with several applications, which we will do in the next subsection,

it is useful to first discuss our modelling assumptions, and some potential limitations.

So far, we have made five simplifying assumptions on the buyer side of the market: (i) full

coverage; (ii) buyers’ net utility (2) is decreasing one-for-one with platform’s margin PBi ; (iii) buy-

ers are restricted to singlehoming; (iv) horizontal differentiation between platforms is sufficiently

8Our setup can easily accommodate heterogeneous per-buyer cost ci for each platform i provided buyers obtain
a standalone participating benefit bi on each platform and bi − ci is constant across all platforms i = 1, ...,m.
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large so that the demand system faced by the platforms, which we derive in the next section, is

well-defined; (v) the gross utility function Ui is homogenous across buyers. In Section 5.1 and

Section A of the Online Appendix, we show that the first two assumptions can be relaxed and

our baseline results can still be obtained in certain cases. The latter three assumptions are more

critical. Specifically, assumption (iii) is at the heart of our no-spillover condition, and rules out

platform instruments that influence buyers’ homing behavior such as buyer-side exclusive contracts

or investments in technologies that facilitate multihoming. The existence of multihoming buyers

would invalidate the discrete-choice-based buyer participation behavior in (3). We discuss how

allowing for some multihoming buyers can be interpreted in terms of cross-platform spillovers in

Section 4.2. Assumption (iv) ensures equilibrium uniqueness in the buyer-seller participation sub-

game. It rules out “tipping equilibria” considered in models of homogenous platforms by Caillaud

and Jullien (2003) and Karle et al. (2020), in which users may coordinate to all join only one

of the platforms. Finally, assumption (v) rules out models with heterogeneous buyer interaction

benefits such as (Rochet and Tirole, 2003, 2006), though it is important to note we impose no such

restriction on the seller side.

As will be illustrated in the next subsection, the framework can accommodate a wide range of

specifications on the seller side. It can easily handle multiple product categories each occupied by

a monopoly seller or atomistic competing sellers. The framework can also allow for non-atomistic

oligopolistic sellers within each product category, regardless of whether the number of potential

sellers is fixed (as in Teh, 2022), endogenously determined by free-entry condition (as in Nocke

et al., 2007)), or depends on the platform’s first-party entry decisions (as in the special cases of

Hagiu et al. (2022) and Anderson and Bedre-Defolie (2023)). However, a notable restriction on the

seller side is that sellers are unable to strategically influence buyers’ participation behavior, e.g.,

non-atomistic sellers making participation decisions or signing exclusivity contracts prior to buyer

participation decisions. In such cases, the functions Ui and Ri would have to explicitly account for

individual seller’s participation in their arguments. Our timing of simultaneous participation by

buyers and sellers rules out these possibilities.

2.2 Examples of applications

In this subsection, we show how different applications easily fit within the general framework pre-

sented above by introducing five microfounded models of different platform design choices. The

same applications will be used later in illustrating our general welfare results. While the applica-

tions here do not have platform spillovers built into them, the same applications are extended in

Section 4.1 to settings where platform spillovers arise.

For all applications below, we assume there is a mass-one continuum of product categories,

each involving one monopolist seller facing the same downward-sloping demand function from

buyers. Each product category is indexed by the fixed cost ki the seller faces to join each platform

i = 1, ...,m, where ki ∈ [kmin, kmax] is distributed according to a log-concave CDF G, where

kmin ≥ 0.9 It doesn’t matter whether ki for a given seller is correlated across platforms or not.

9This setup extends to product categories varying in terms of their draw of demand rather than the variation in
fixed participation costs considered here. It also extends to the case with multiple competing sellers that can enter
in each product category. In Online Appendix B we provide an example with both of these features and use it to
fully characterize the welfare loss associated with the seller-excluded outcome.
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The case where ki and kj are not perfectly correlated allows us to accommodate the possibility of

some sellers singlehoming and others multihoming in equilibrium. For simplicity, we assume sellers

do not face any marginal cost of production, an assumption which is reasonable for some digital

settings. For convenience, every buyer is assumed to want to buy from each category.

� Application 1 (Two-part tariffs and pass-through). Each platform i chooses ai =(
fi, P

S
i

)
, where fi ≥ 0 is a per-unit transaction fee and PSi ≥ 0 is a lump-sum membership fee

charged to sellers. Facing the price from a seller on platform i of pi, each buyer chooses the number

of units to purchase q to maximize their net utility; i.e., arg maxq {u (q)− piq}. As a result, each

seller faces the resulting per-buyer demand q (pi). Facing the per-unit fee fi, a seller’s optimal

price on platform i is then

p∗ (fi) = arg max
pi
{(pi − fi)q(pi)} .

We assume that p∗ (fi) is unique and well-defined for the relevant range of fi ≥ 0 (e.g., if q(.) is

strictly log-concave) and that the pass-through rate ∂p∗/∂fi ∈ (0, 1). Denote q∗ (fi) ≡ q(p∗ (fi)).

Then the per-buyer profit of each seller is π∗ (fi) = (p∗ (fi) − fi)q∗ (fi) and the per-seller surplus

of the buyer is u∗ (fi) = u (q∗ (fi))− p∗ (fi) q
∗ (fi), both of which are decreasing in fi.

Each seller participates on i iff

ki ≤ π∗ (fi) si − PSi ≡ k̄i,

meaning the mass of participating sellers on platform i is G(k̄i), which is decreasing in fi. Notice

this is independent of decisions by platform j (when holding si fixed), reflecting that each seller’s

decision to join i is strategically independent of its decision to join j, as is the case in the classic

competitive bottleneck setting.

We are now ready to define the key functions Ui and Ri in (2) and (4). We have

Ui = u∗ (fi)G
(
k̄i
)
.

Note that Ui depends on
(
fi, P

S
i

)
and si as indicated in the general setup. Here fi affects buyer

utility u∗ (fi) through the positive pass-through in sellers’ pricing, while fi, P
S
i and si all affect

how many sellers participate and so buyers’ utility via cross-side network effects (as captured by

G
(
k̄i
)
). And

Ri =
(
fiq
∗ (fi) si + PSi

)
G
(
k̄i
)
.

� Application 2 (Platform investment). The identical setup can apply to other platform

instrument choices. Suppose each platform chooses ai = (ri,−Ii), where ri ∈ [0, 1] is now a

commission rate and Ii is platform i’s level of investment10 with associated convex cost C (Ii). The

platform’s investment Ii is assumed to scale up the buyer’s gross utility obtained from transacting

with any seller, so this now equals u (qi) Ii. Defining the seller’s quality-adjusted price p̂i = pi
Ii

, each

seller sets p̂i to maximize (1− ri) Iip̂iqi (p̂i). Let the resulting profit maximizing price be denoted

p̂∗, which note doesn’t depend on either ri or Ii. The per-buyer profit of each seller is (1− ri) Iiπ∗

and the per-seller surplus of the buyer is Iiu
∗, where π∗ = p̂∗q (p̂∗) and u∗ = u (q (p̂∗))− p̂∗q (p̂∗).

10It will become clear in Section 3 why we define ai in terms of −Ii rather than Ii.
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Following the same steps in Application 1, we have k̄i ≡ (1− ri) Iiπ∗si and

Ui = Iiu
∗G
(
k̄i
)

Ri = riIiπ
∗siG

(
k̄i
)
− C (Ii) .

(6)

� Application 3 (First-party entry and self-preferencing). Suppose now each platform

chooses ai = (ri, ei, li), where ei ∈ {0, 1} indicates whether platform i operates as a dual-mode

marketplace or not and li ∈ {0, 1} indicates whether platform i engages in self-preferencing or

not.11 When it operates in dual mode, it introduces a first-party product whenever a third-

party seller has entered in any product category. With probability 1 − α, the first-party entry is

unsuccessful (e.g., the first-party product is poorly received) and the seller (in each category) is in

a monopoly position as in the previous applications (with corresponding gross profit π∗ and buyer

utility u∗ from Application 2). With probability α, the first-party entry is successful. The resulting

duopolistic competition results in two possible outcomes. When the platform doesn’t engage in

self-preferencing, the first-party profit is πfp and the third-party seller profit is (1 − ri)πd, where

0 < πd < π∗, while the corresponding buyer utility is ud > u∗. When the platform engages in

self-preferencing, the first-party profit is πsp > πfp and, for expositional simplicity, the third-party

seller profit is normalized to zero, while the corresponding buyer utility is usp, where usp < ud.

We assume that first-party products do not “cross-list” on rival platforms, which ensures that the

no-spillover condition holds.

Following the same steps in Application 1, we have k̄i ≡ (1− ri)(π∗ − αei(π∗ − (1− li)πd))si,

Ui = (u∗ + αei(liu
sp + (1− li)ud − u∗))G

(
k̄i
)

Ri = (riπ
∗ + αei(liπ

sp + (1− li)
(
riπ

d + πfp
)
− riπ∗))G

(
k̄i
)
si.

Here, ei and li directly affect buyers’ utility on platform i, as well as indirectly via how many

sellers participate on platform i.

� Application 4 (Leakage prevention). Suppose that buyers have to join at least one

platform before they can transact with sellers. However, a fraction β > 0 of sellers have direct

sales channels (e.g., their own websites), which allows each of them to avoid the platform fees if

buyers switch to purchase from the seller through their direct channel.12 A fraction λi ≥ 0 of

buyers are unaware of this option to buy from the seller directly, with the remaining fraction 1−λi
aware and able to switch costlessly (and so buy from whichever channel is cheapest). Buyers realize

which situation they are in after participating on a platform. Each platform chooses ai = (ri, λi),

where λi ∈ [λmin, λmax] reflects that the platform can influence the probability any given buyer

will be aware of a seller’s direct-channel option via its governance design. For example, a platform

could take steps to prevent communication by sellers which informs buyers of their direct channel.

Participating sellers set prices pi (on platforms i = 1, ...,m) and pd (their price when selling

directly if they have a direct channel). Buyers who are informed on platform i would buy directly

if and only if pi ≥ pd. Moreover, given ri ≥ 0, each seller would always want to induce leakage.

11A literature has recently emerged to address whether the choice of dual-mode marketplace is desirable in the
context of a single platform, either absent the possibility of self-preferencing (see, for example, Etro (2021)) or also
allowing for the possibility of self-preferencing (see, for example, Hagiu et al. (2022) and Anderson and Bedre-Defolie
(2023)).

12Hagiu and Wright (2023) study leakage in the case of a monopoly platform.
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Therefore, if a seller who has a direct channel joins a non-empty set of platform(s) φ ⊆ {1, 2, ...,m},
then it sets its prices to maximize∑

i∈φ
((1− ri) piq(pi)λi + pdq(pd)(1− λi)) si

subject to pd ≤ pi, i ∈ φ.

Given the pricing problem across channels is additively separable, the optimal price is pd = pi =

arg maxpi {piq(pi)} for all i ∈ φ, so the standard profit and utility terms π∗ and u∗ still apply

in this case. The same pricing decision also applies to sellers without a direct channel: they set

pi = arg maxpi {piq(pi)} for all i ∈ φ.

Each seller with a direct channel would participate on platform i if and only if ki ≤ (1− λiri)π∗si ≡
k̄i, while those without direct channels participate if and only if ki ≤ (1− ri)π∗si ≡ k̄ni . Reflecting

these two types of sellers, functions Ui and Ri are written as

Ui =
(
βG
(
k̄i
)

+ (1− β)G
(
k̄ni
))
u∗

Ri = ri
(
βλiG

(
k̄i
)

+ (1− β)G
(
k̄ni
))
π∗si

.

� Application 5 (App tracking restrictions). Similar to Application 4, suppose that

buyers have to join at least one platform before they can transact with sellers. Buyers on platform

i can obtain (e.g., unlock) q units of content from sellers by either: (i) paying the seller price pi

per unit; or (ii) watching ads, which results in ad disutility z per unit to buyers and generates

per-unit ad revenue πa (1− τi) > 0 to sellers, where τi ∈ [0, τmax] is how restrictive platform i’s app

tracking policy is (which can influence the ad revenue of sellers) and τmax < 1. Suppose seller’s

revenue from (i) can be taxed by the platform through its commission ri, while its ad revenue in

(ii) cannot. We assume z ≥ 0 is i.i.d. across buyers and sellers, drawn from the weakly log-concave

CDF H.

Each platform choose ai = (ri, τi). Then, a typical seller that joins a non-empty set of plat-

form(s) φ ⊆ {1, 2, ...,m} sets its prices to maximize its profit

∑
i∈φ

(
(1− ri) piq(pi)(1−H(pi)) + πa (1− τi)

∫ pi

0
q(z)dH(z)

)
si.

We assume its profit is strictly quasiconcave, a sufficient condition for which is that q(pi) has an

elasticity (in magnitude) that is non-decreasing and is no lower than one over the relevant range.

Observe that the pricing problems are separable, and so each seller’s optimal price p∗i on platform

i is independent of the (rj , τj) (when holding si) constant.

Each seller would participate on i if and only if

ki ≤

(
(1− ri) p∗i q(p∗i )(1−H(p∗i )) + πa (1− τi)

∫ p∗i

0
q(z)dH(z)

)
si ≡ k̄i,

and so
Ui =

(∫∞
0 u(q(min(p∗i , z))−min(p∗i , z)q(min(p∗i , z))dH(z)

)
G
(
k̄i
)

Ri = rip
∗
i q(p

∗
i )(1−H(p∗i ))siG

(
k̄i
) .
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3 Equilibrium and seller-excluded outcomes

Denote the symmetric equilibrium buyer fee and platform instrument vector for each platform as

PB∗ and a∗ ∈ A, and let the equilibrium buyer-side market share profile be

s∗ = 1/m ≡ (1/m, ..., 1/m),

where 1 is a m-dimension vector of ones.

To pin down the equilibrium, a useful technique is to consider the following “semi-symmetric”

participation equilibrium when one of the platforms (say platform i) deviates from the equilibrium

and sets
(
ai, P

B
i

)
6= (a∗, PB∗), resulting in an off-equilibrium path instrument vector profile

â = (ai, a
∗, ..., a∗) ∈ Am,

buyer fee profile (PBi , P
B∗, ..., PB∗) and buyer-side market share profile:

ŝ =

(
si,

1− si
m− 1

, · · · , 1− si
m− 1

)
.

That is, the deviating platform i’s choices result in it having a market share si 6= 1/m while all

other m − 1 platforms equally absorb the resulting change in market share (due to the market

being covered and symmetry). Then, given that Uj(â; ŝ) is symmetric across platform j 6= i, we

can explicitly rewrite the fixed-point definition of market share si in (3) as

si = Φ
(
Ui(â; ŝ)− U−i(â; ŝ)− PBi + PB∗

)
, (7)

where U−i(â; ŝ) = Uj(â; ŝ) and Φ (.) is the cumulative distribution function of maxj 6=i{εj} − εi.
We assume functional forms are such that a unique fixed-point in (7) always exists. This

requires the right-hand side of (7) has a slope less than one with respect to si, which holds if the

extent of platform horizontal differentiation (measured by 1/Φ′) is large relative to the cross-group

network effects (measured by the rate at which Ui − U−i changes with si). Under this condition,

the resulting demand system is analogous to standard discrete choice models.

Platform i chooses
(
ai, P

B
i

)
to maximize profit Πi, taking as given (a∗, PB∗) set by each other

platform. To solve this maximization problem, a useful technique is to reframe the problem as

platform i directly choosing the target market share si implementable by its fee PBi , i.e., maxi-

mization with respect to (ai, si). Formally, this can be done by inverting (7), so that PBi (ai, si)

becomes a function of (ai, si) satisfying

PBi = Ui(â; ŝ)− U−i(â; ŝ) + PB∗ − Φ−1 (si) . (8)

Then, platform i’s problem is to choose (ai, si) to maximize

Πi =
(
PBi − c

)
si +Ri

= (Ui − U−i + PB∗ − Φ−1 (si)− c)si +Ri.

12



By continuity of profit functions, a solution to this maximization problem exists for each plat-

form i (which can be non-interior and non-unique). By the envelope theorem, each platform’s

optimal choice of ai ∈ A can be obtained by maximizing Πi while holding si constant at the

equilibrium value 1/m. Then, in any symmetric equilibrium with each platform setting its n-

dimensional instrument vector a∗ ∈ A, we must have a∗ satisfying the fixed-point relation

a∗ ∈ arg max
ai∈A

{
1

m
(Ui(â; 1/m)− U−i(â; 1/m)) +Ri(â; 1/m)

}
. (9)

Taking into account equilibrium multiplicity, we denote

A∗ = {a∗ ∈ A : a∗ satisfies (9)} .

as the set of all symmetric equilibrium platform instrument vectors. If the equilibrium is unique,

then A∗ is a singleton set containing a single vector a∗ satisfying (9).

Intuitively, the platform uses its buyer membership fee to implement its target buyer-side

market share, and so its optimal instrument vector focuses on how ai affects: (i) the membership

fee that platform i can charge buyers (while maintaining its market share), which is captured by

the extent to which a higher ai changes the utility difference between the two platforms; and (ii)

its other net revenue sources Ri.

3.1 The equivalence result and no spillovers

As Armstrong (2006) showed (Proposition 4), in the classic competitive bottleneck setting (i.e.,

a homing configuration of multihoming sellers and singlehoming buyers), the equilibrium seller

(membership) fees coincide with the fees that maximize the joint buyer surplus and platform

profit. In what follows, we show that this property on the platform fee level extends to arbitrary

platform instrument vectors in this general environment, so long as a no cross-platform spillover

assumption holds, which we will define below. This provides a convenient way to characterize the

equilibrium outcome in general, and is the key to obtaining general welfare results.

We label the “seller-excluded” outcome as the profile of platform instrument vectors (aSE1 , ..., aSEm ) ∈
Am that maximizes total welfare less seller profit (i.e., the surplus of buyers and the profit of the

platforms):

WSE(a) =
∑

i=1,...,m

{(
Ui − PBi + Ei

)
si + (PBi − c)si +Ri

}
, (10)

where Ei = E[εi|i = arg maxi=1,...,m

{
Ui − PBi + εi

}
] is the expectation of buyer match value on

platform i conditioned on i being chosen. In this definition of the seller-excluded benchmark we

allow each platform i to optimally adjust its buyer prices PBi in response to changes in a, so that

the profile of buyer-side market share s = (s1, ..., sm) is endogenous.13 Denote sSE=
(
sSE1 , ..., sSEm

)
as the corresponding market share of the platforms at the optimum.

We are interested in comparing the seller-excluded benchmark with the equilibrium outcome.

One complication for the comparison is that s varies when a varies in the maximization of (10). As

13Another approach to defining the seller-excluded outcome is to shut down platforms’ response in buyer prices
by allowing both a and PB to be set to maximize (10). It is easily seen that this modification does not affect the
characterization in (11) below given the assumptions of symmetric platforms and a fully covered buyer-side market.
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such, in general, the resulting buyer-side market share could be different across the two benchmarks.

Nonetheless, our assumption of symmetric platforms addresses this issue since it implies s∗ =

sSE = 1/m. Given symmetry, we can omit the terms Ei and c in (10) as they become irrelevant in

maximizing WSE . Imposing symmetry aSEi = aSE ∈ A and applying the principle of maximum,

we can pin down aSE with a fixed-point relation

aSE ∈ arg max
ai∈A
{ 1

m

∑
i=1,...,m

Ui(â
SE ; 1/m) +Ri(â

SE ; 1/m)}, (11)

where âSE = (ai, a
SE , ..., aSE). Taking into account the possibility of multiple solutions, we denote

ASE ⊆ A as the set of all such (symmetric) maximizers aSE :

ASE =
{
aSE ∈ A : aSE satisfies (11)

}
.

Our first key result shows that the n-dimensional instrument vectors a∗ and aSE defined in (9)

and (11) coincide, so that A∗ = ASE , when the following “no cross-platform spillover” condition

holds:

� No cross-platform spillover: For all platforms i, Ui (a; 1/m) and Ri (a; 1/m) are inde-

pendent of the vector aj (for all j 6= i).

Intuitively, the no-spillover condition captures situations where: (i) the utility a buyer gets on

one platform does not depend, either directly or through sellers’ reactions, on the actions taken

by any rival platform, and (ii) the revenue a platform generates does not depend, either directly

or through sellers’ reactions, on the actions taken by any rival platform. In particular, many

microfounded models with multihoming sellers and singlehoming buyers in the two-sided platform

literature (such as those discussed in Armstrong (2006) and Belleflamme and Peitz (2019a)) satisfy

these assumptions. Indeed, inspecting the Ui and Ri functions for the five applications introduced

in Section 2.2, it can immediately be seen that all satisfy the no spillover condition.14

Proposition 1 (Equivalence). Suppose that the no cross-platform spillover condition holds. Then,

A∗ = ASE =

{
a∗i ∈ A : a∗i ∈ arg max

ai∈A

{
1

m
Ui(â; 1/m) +Ri(â; 1/m)

}}
, (12)

where â = (ai, a
∗, ..., a∗). That is, the set of equilibrium instrument vectors coincides with the set

of seller-excluded instrument vectors.

The power of equivalence result is that it implies the platforms’ equilibrium instrument vector

is distorted in the direction of outcomes with a lower seller profit compared to the total welfare

benchmark. Our result based on an arbitrary platform instrument vector allows us to comment

not just on platform fees (e.g., Apple’s App Store commission level) but also on platform design

14Note the condition does not impose restriction on how si and s−i affect Ui and Ri. Moreover, even if Ui or
Ri somehow depend on how s−i is distributed among the other m− 1 platforms, it does not create a spillover that
would affect our results due to the symmetric setup.
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choices (e.g., Apple’s investments in its App Store, its decision to sell its own apps and to promote

these over third-party apps, and various in-app transaction policies it might adopt such as its

no-steering rule which prevents developers from directing users within their iOS apps to make

purchases outside the App Store). For instance, in Application 1, seller profit is decreasing in

the platform transaction fee and membership fee. Then, the seller-excluded outcome would imply

excessive seller transaction and membership fees, relative to total welfare maximization. Note the

characterization in (12) holds for any value of m, suggesting that any such distortion, if it exists,

is not necessarily eliminated by having more platforms compete.

Before proceeding to formalize the welfare implications, it is useful to compare our equivalence

result with that obtained by Armstrong (2006) (his Proposition 4). He focuses on platforms that

just choose seller membership fees (i.e., a single instrument). Adapted to our context, Armstrong

(2006)’s equivalence result is obtained by fixing each platform’s buyer market share fixed at some

arbitrarily given level as part of a market share profile s in both definitions (9) and (11). In a two-

sided platform setting, when comparing different platform choices on the seller-side, the question

is whether we compare the corresponding outcomes on the seller-side allowing the buyer-side’s

demand to adjust (our approach) or do we hold the buyer side’s demand constant (Armstrong’s

approach). Our approach of allowing the buyer-side demand to adjust is consistent with a standard

welfare analysis in which cross-side network effects are taken into account when considering the

effects of different choices of the platforms’ seller-side instruments. Indeed, this will allow us to

readily derive welfare implications of the equilibrium outcome. Nonetheless, in our environment,

the two approaches lead to the same results for all our propositions because the only market share

profile on the buyer side that satisfies symmetry and full coverage is s = 1/m. Meanwhile, in

Section A of the Online Appendix, we show that Proposition 1 continues to hold with Armstrong’s

approach, with possibly asymmetric platforms and an incompletely covered buyer-side market.

Proposition 1 is also a stronger result than the corresponding part of Armstrong (2006)’s

Proposition 4 given we allow for the maximization ofWSE without having to hold buyer-side market

shares constant. However, to obtain this result we require the setting be symmetric in market

shares. Intuitively, when platforms are asymmetric, the maximization of WSE would take into

account how changes in the buyer-side market shares (s1, ..., sm) affect the asymmetric surpluses

generated across the platforms, which is something individual platforms would not take into account

(by the envelope theorem). This means that the buyer-side market shares would typically be

different in the characterizations of a∗ and aSE in (9) and (11). The assumption of symmetric

platforms harmonizes this difference in the market shares across the two characterizations.

3.2 Welfare implications

Next, we describe how the seller-excluded outcome (and therefore, given Proposition 1, the equi-

librium outcome) is distorted relative to the total welfare benchmark in general. Following the

same idea in constructing the seller-excluded welfare (10), we denote total welfare as W (a) =

WSE(a) + SS(a), where SS(a) is the total seller surplus (across all m platforms) and recall

a ∈ Am. In what follows, we assume that

ŜS(ai) ≡ SS((ai, ai, ...., ai)) (13)
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is weakly decreasing in ai ∈ A. That is, we interpret a uniformly higher platform instrument vector

as lowering seller surplus. Given that we can always redefine the sign of the relevant components

of vector ai, this assumption is equivalent to ŜS(ai) being monotonic in ai. For example, in our

Application 2, seller surplus decreases with a higher platform fee ri but increases with a higher

platform investment Ii. By defining ai = (ri,−Ii), seller surplus decreases in all dimensions of ai.

By symmetry, we can alternatively define the instrument vectors resulting from maximizing

the seller-excluded welfare and the total welfare as:

aSE ∈ ASE ≡ arg max
ai∈A

ŴSE(ai) ≡ arg max
ai∈A

WSE((ai, ai, ...., ai)) (14)

aW ∈ AW ≡ arg max
ai∈A

Ŵ (ai) ≡ arg max
ai∈A

ŴSE(ai) + ŜS(ai), (15)

where recall we do not impose uniqueness of the solutions. To compare sets AW and ASE , we

adopt the following notion:15

� Strong set order (Topkis, 1979). A set A′′ is higher than set A′ in strong set order (denoted

as A′′ ≥sso A′) if for any pairs of vectors a′ ∈ A′ and a′′ ∈ A′′, we have a′ ∨ a′′ ∈ A′′ and

a′ ∧ a′′ ∈ A′. Here, a′ ∨ a′′ is the dimension-wise maxima of the two vectors and a′ ∧ a′′ is the

dimension-wise minima of the two vectors.

In particular, if sets A′ and A′′ are singletons, then strong set order is equivalent to the usual

vector ordering a′′ ≥ a′, in which each of the n different platform instruments in vector a′′ is higher

than those in vector a′. If only set A′ is a singleton and contains only an element a′, then strong

set ordering implies that every a′′ ∈ A′′ satisfies a′′ ≥ a′.
One well-known complication of multi-dimensional comparative statics is the cross-dimension

effects, whereby distortions in one of the dimensions may reinforce or diminish distortions in other

dimensions. For example, platform i’s excessive commission (relative to the welfare benchmark)

may reinforce or diminish its incentive to charge an excessive seller participation fee and to set an

insufficient level of investment. To proceed, we define the following concept:

� Quasi-supermodularity (Milgrom and Shannon, 1994). A function Ŵ (ai) is quasi-supermodular

in its argument ai ∈ A if, for any pair of vectors a′i ∈ A and a′′i ∈ A, we have

Ŵ (a′i)− Ŵ (a′i ∧ a′′i ) ≥ (>)0⇒ Ŵ (a′i ∨ a′′i )− Ŵ (a′′i ) ≥ (>)0.

Quasi-supermodularity is implied by the standard weak supermodularity condition, and the

latter property is preserved by summation.16 More generally, there are a few easy-to-check sufficient

conditions for Ŵ (ai) to be quasi-supermodular: (i) Ŵ (ai) is monotone in ai; or (ii) there exists

a strictly increasing function h : R → R such that h(Ŵ (ai)) is supermodular in ai (e.g., log

15Obviously, if sellers always obtain no surplus (e.g., they fully compete away all their surplus), AW and ASE

trivially coincide. Hence, our discussion is aimed at the more intersting situation where sellers obtain positive
surplus at the welfare maximizing solution.

16That is, if we assume continuous choice and differentiability, and let ai = (z1, z2, ...zn) ∈ Rn, then this is
equivalent to ∂2Ŵ/∂zk∂zl ≥ 0 for every pair of dimensions k 6= l, k, l = 1, 2, ...n.

16



transformations). Moreover, if ai is a scalar, then quasi-supermodularity trivially holds; if ai is two-

dimensional, then quasi-supermodularity is equivalent to Ŵ (ai) obeying single-crossing difference

in a pairwise manner.17

Proposition 2 (Comparing benchmarks). Suppose the total seller surplus function ŜS(ai) is

weakly decreasing in ai ∈ A and one of the following conditions holds:

� The function Ŵ (ai) (or ŴSE(ai)) is quasi-supermodular.

� Platform instrument ai is a scalar, i.e., A ⊆R.

Then, regardless of whether the no cross-platform spillover condition holds or not, ASE ≥sso
AW . That is, the set of seller-excluded instrument vectors is higher than the set of welfare-

maximizing instrument vectors in terms of strong set order.

When the no-spillover conditions hold, we can combine Proposition 1 and Proposition 2:

Corollary 1 Suppose that the no cross-platform spillover condition and the conditions in Propo-

sition 2 hold. Then

A∗ = ASE ≥sso AW

Proposition 2 and Corollary 1 formally establish the previous claim that a seller-excluded

outcome implies a market distortion where the platforms’ instrument vector is distorted in the

direction of outcomes with a lower seller surplus compared to the total welfare benchmark. In

particular, for decision variables that reduce seller surplus such as seller fees, then the seller-

excluded outcome implies excessive fees; for decision variables that increase seller surplus such as

platform investments, then the seller-excluded outcome implies insufficient investment.

The quasi-supermodularity assumption in Proposition 2 is not a very restrictive assumption

and holds easily in several classes of examples. First, quasi-supermodularity assumption trivially

holds if ai is single-dimensional, and so it is restrictive only when ai is multi-dimensional. Second,

if vector ai refers only to some combination of seller-side fees offered by the platforms, then in many

standard models including Application 1 in Section 2.2, above-cost pricing generates deadweight

losses so that Ŵ (ai) is monotone in ai and so satisfies quasi-supermodularity. Third, in applications

where each dimension of ai is a binary variable, then W and WSE are trivially monotone and hence

satisfies quasi-supermodularity.

3.3 Applications continued

In this section, we apply Propositions 1 and 2 to Applications 1-5 from Section 2.2, which we

can do given that seller surplus is decreasing in ai for all five applications. Additional details are

provided in Online Appendix C.

17That is, if we assume continuous choice and differentiability, and let n = 2 so that a platform’s instrument vector
is ai = (z1, z2) ∈ R2, then this is equivalent to ∂Ŵ/∂zk being single-crossing in zl for each dimension k 6= l, k = 1, 2.
That is, If ∂Ŵ/∂zk ≥ (>)0 at zl = z′l, then ∂Ŵ/∂zk ≥ (>)0 for all zl > z′l.
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� Application 1 (Two-part tariffs). By symmetry, Ŵ (ai) is proportional to

(u∗ (fi) + π∗ (fi) + fiq
∗ (fi))G

(
k̄i
)
−m

∫ k̄i

kmin

kdG (k) ,

which is decreasing in platform fees
(
fi, P

S
i

)
by the standard deadweight loss logic. Thus, Ŵ (ai)

satisfies the quasi-supermodularity condition. By Propositions 1-2, we conclude that in the equi-

librium, the equilibrium platform fees coincide with the SE benchmark fees, which are excessive

compared to the levels maximizing total welfare.

� Application 2 (Platform investment). By symmetry, Ŵ (ai) is proportional to

Ii(u
∗ + π∗)G

(
k̄i
)
−m

∫ k̄i

kmin

kdG (k)− C(Ii).

In the case of weakly convexG, the function above is weakly supermodular (hence quasi-supermodular)

in (ri,−Ii). By Propositions 1-2, we conclude that in the equilibrium, platform fees are excessive

and investment levels are insufficient compared to the levels maximizing total welfare.

� Application 3 (First-party entry and self-preferencing). By symmetry, Ŵ (ai) is

proportional to

(
u∗ + π∗ + αei

(
li∆

sp + (1− li) ∆fp
))

G
(
k̄i
)
−m

∫ k̄i

kmin

kdG (k) ,

where we define ∆sp = πsp + usp − π∗ − u∗ and ∆fp = πfp + πd + ud − π∗ − u∗ as the ex-post

efficiency gain from first-party entry with and without self-preferencing. Suppose ∆fp > ∆sp. Then

it can be shown that Ŵ is decreasing in ri (given a higher fee decreases seller participation k̄i),

decreasing in ei regardless of li provided ∆fp is not too large, and decreasing in li, thus satisfying

the quasi-supermodularity condition.

By Propositions 1-2, we conclude that in the equilibrium, the platform fees, first-party entry

intensity, and self-preferencing intensity (ri, ei, li) coincide with the SE benchmark, which are

excessive compared to the total welfare benchmark. Thus, from a welfare perspective, not only

do platforms set their seller-fees too high, but they enter and sell their own competing version

of participating sellers’ products when sometimes they should not, and moreover, steer buyers to

purchase their versions of the sellers’ product (i.e., self-preference) when sometimes they should

not, whereas the reverse (setting seller-fees too low, not entering when they should, and not steering

when they should) is never true.

� Application 4 (Leakage prevention). By symmetry, Ŵ (ai) is proportional to

(u∗ + π∗)(βG
(
k̄i
)

+ (1− β)G
(
k̄ni
)
)−mβ

∫ k̄i

kmin

kdG (k)−m(1− β)

∫ k̄ni

kmin

kdG (k) .

Given that k̄i depends only on λiri, this setup is formally equivalent to each platform i choosing a

“baseline fee” ri and a “leakage-adjusted effective fee” λiri. It then follows that Ŵ is decreasing in

ri and λi, thus satisfying the quasi-supermodularity condition. By Propositions 1-2, we conclude

that the equilibrium (ri, λi) coincides with the SE benchmark. Hence, platforms charge excessive
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fees and engage in excessive leakage prevention compared to the levels maximizing total welfare.

� Application 5 (App tracking). It turns out that directly verifying quasi-supermodularity

is not straightforward for this application. However, one technique is to note that each seller’s op-

timal price on each platform i, p∗i , is a strictly increasing function of 1−τi
1−ri . Hence, for the purpose of

establishing quasi-supermodularity, we can alternatively reframe each platform’s choice of instru-

ment vector as choosing a commission rate ri and a target seller price p∗i (which is implemented

via app tracking policy τi ∈ [0, τmax]). Given this reformulation, it can be shown that seller sur-

plus is increasing in p∗i , and that Ŵ is quasi-supermodular in (ri,−p∗i ) when distribution G has

a constant and sufficiently small elasticity (so that seller participation becomes relatively unre-

sponsive to changes in post-participation profits). The latter implies (ri,−p∗i ) in the equilibrium

is higher than its counterpart in the welfare-maximizing outcome. Given that p∗i is decreasing in

τi, the lower price in the equilibrium is necessarily driven by τ∗i ≥ τWi . Thus, we conclude that

in the equilibrium, platform fees are too high, while their app tracking policies are too restrictive,

compared to those maximizing total welfare.18

4 Cross-platform spillovers

When there are cross-platform spillovers in the instrument vector ai, the equilibrium outcome

will generally be different from the seller-excluded outcome, and we can no longer rely on the

equivalence result of Proposition 1 to obtain our welfare results. Our goal in this section is to

sign the difference between the equilibrium and seller-excluded outcomes when spillovers have

well-defined structures, and to use this to extend our previous welfare results.

� Negative (Positive) cross-platform spillovers: For all platforms i, Ui (a; 1/m) and

Ri (a; 1/m) are weakly decreasing (increasing) in each dimension of each individual rival

platform’s vector aj (for every j 6= i).

Note that the spillover definition above requires the same sign for each dimension of the rival

platforms’ instrument vector aj . Recall that we have defined vectors ai such that seller surplus

ŜS(ai) defined in (13) is decreasing with respect to each dimension of ai. Hence, the spillovers

definition above essentially requires Ui and Ri to be monotone in the same direction when vectors

ai are defined in the same way. For example, in the next subsection we consider an amended version

of our Application 2 whereby Ui is decreasing in each rival’s commission rj but increasing in each

rival’s investment Ij . By defining aj = (rj ,−Ij), as we did in that application, Ui is decreasing in

all dimensions of aj , and ŜS is also decreasing in each of the platform instruments as well.

In the presence of spillovers, we can sign the difference between the equilibrium outcome and

the seller-excluded outcome, i.e., (9) and (11), as follow:

Proposition 3 (Spillovers). Suppose the negative (positive) cross-platform spillovers condition

holds and one of the following conditions holds:

18Note this analysis is only meant to highlight the distortions in the welfare of the buyers, sellers and platforms
that arise from the seller-excluded outcome. Specifically, we don’t consider the possible efficiency benefits of targeted
advertising for the advertising firms, as well as the privacy costs that buyers may incur from advertisers being able
to better track their activities across other apps and websites.
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� The function ŴSE(ai) is quasi-supermodular.19

� Platform instrument ai is a scalar, i.e., A ⊆R.

Then, A∗ ≥sso (≤sso)ASE. That is, the set of equilibrium instrument vectors is higher (lower)

than the set of seller-excluded instrument vectors in strong set order. If, in addition, the total

seller surplus function ŜS(ai) is weakly decreasing in ai, then A∗ ≥sso AW .

Proposition 3 says that negative spillovers create an additional distortion (in the same direction)

to the one identified in Proposition 2 (provided the stated conditions hold). That is, the conclusion

in Section 3 on distortions in the direction of a lower seller surplus continues to hold. Meanwhile,

positive spillovers can potentially mitigate the distortions identified in Proposition 2, leading to an

ambiguous welfare implication in this case.

Quasi-supermodularity of WSE is a key condition in multi-dimensional comparative statics ex-

ercises, but beyond the case of scalar instruments it can be hard to verify in some applications.

An alternative and perhaps more widely-applicable approach to sign the difference between aSE

and a∗ is to utilize the idea that in many applications the spillovers are generated through seller

participation behavior, which depends on how decisions on platform i affects the overall participa-

tion profit of each seller. As such, seller participation profit can be a sufficient proxy variable to

describe the spillover pattern.

For example, in Section 4.1 below, we consider Application 2 with ai = (ri,−Ii), but assume

the fixed cost sellers incur to partipicate on a platform are perfectly correlated and only have to

be incurred once, so that there is no additional fixed cost to participate on additional platforms

once a seller has participated on one platform. Then, a seller participates if and only if its common

draw of participation cost k is lower than
∑

i=1,...,m k̄i (where k̄i ≡ (1− ri) Iiπ∗si), which is the

sum of the profits it earns on all platforms. In this case, the effect of platform i’s choice of ai on

platforms j 6= i occurs only via (ri − 1) Ii, which can be understood as a “proxy” instrument on

how platform i generates spillovers to other platforms. Therefore, instead of identifying the sign of

distortions in ri and Ii separately, one can instead directly look at (ri − 1) Ii and the implications

on the total seller participation.

More formally, define:

� Negative (Positive) proxied spillovers: There exists a weakly increasing “proxy instru-

ment” function b : A → R such that the following holds. For all platforms i, (i) Ui and Ri

depend on the vector aj (for all j 6= i) only through scalar bj = b(aj), that is, Ui = Ui (ai, b; s)

and Ri = Ri (ai, b; s) where b = (b1, b2, ..., bm); and (ii) Ui and Ri are weakly decreasing (in-

creasing) in bj (for all j 6= i) when holding s = 1/m fixed.

Corollary 2 (Proxied spillovers). Suppose the negative (positive) cross-platform proxied spillovers

condition holds. Then, the proxy instrument satisfies b(a∗) ≥ (≤)b(aSE) for any equilibrium in-

strument vector a∗ and seller-excluded instrument vector aSE. If, in addition, the conditions in

Proposition 2 hold, then negative cross-platform proxied spillovers imply b(a∗) ≥ b(aW ).

19To be more technically precise, we only need quasi-supermodularity to hold for ai ≥ a∗ ∧ aSE i.e., for vectors ai
higher than the dimension-wise minima of arbitrary vectors a∗ ∈ A∗ and aSE ∈ ASE .
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We will use both Proposition 3 and Corollary 2 in the following section in order to sign some

welfare results.

4.1 Sources of spillovers

In what follows, we discuss some sources of cross-platform spillovers (and whether they are negative

or positive). For each source of cross-plaform spillover, one can potentially consider how they

may work with respect to various different instruments. Below we illustrate the three spillovers

highlighted with the sets of instruments considered in Applications 1, 2 and 4.20 Additional

derivation details are given in Section D of the Online Appendix.

� Within-seller economies of scale. Spillovers naturally arise in situations where sellers

make decisions that affect their profits across multiple platforms. One example is when sellers only

need to incur a common participation cost once (e.g., app development cost) to participate and sell

on all platforms. In this case, sellers’ participation decision depends on the total post-participation

profit they earn on all platforms, so that any platform instruments that decrease seller net profit

(e.g., fees) generate negative cross-platform spillovers.

More generally, a common participation cost can be interpreted as a special case of sellers

investing in their product or app (or in better marketing them), whereby higher investment in-

creases demand for their product on all platforms, and so anything (e.g., fees) that decreases sellers’

marginal return from their investments, would create a negative cross-platform spillover.21

As an illustration of how spillovers arise through seller participation, we modify Application

2 as follows (a similar spillover structure can also be constructed for the other applications we

considered in Section 2.2). Suppose the fixed cost sellers incur to partipicate on a platform are

perfectly correlated but only have to be incurred once, so that there is no additional fixed cost to

participate on additional platforms once a seller has participated on one platform. Denote k = ki

for all i = 1, ...,m, where k follows the CDF G. Thus, in the equilibrium, a type-k seller either

joins no platforms or joins all platforms. The latter occurs if and only if

k ≤
∑m

i=1
(1− ri) Iisiπ∗ ≡ k̄.

Since the post-participation behaviors of sellers remain the same, we have the same expressions

for functions Ui and Ri in (6), except that a seller’s participation threshold is now k̄, which is

increasing in Ij and decreasing in rj for j 6= i.

Thus, within-seller economies of scale in seller participation gives rise to negative spillovers in

20In the context of media platforms, Anderson and Peitz (2023) also uncovers an alternative source of spillovers:
advertising congestion across platforms. That is, if a platform invites more advertisers it reduces the conversion rate
on competing platforms. Without advertising congestion, their model results in a seller-excluded outcome similar to
ours, whereby platforms do not compete directly for advertisers.

21A conceptually similar source of spillover is within-seller network effects. Apps like online multiplayer games,
dating networks, and social networks provide positive network effects between users. Thus, the more users who adopt
a seller’s app, the more value all other users get. This implies any platform instrument that reduces the demand for
an individual seller’s app (e.g., a higher fee that induces a higher seller price or the seller not to participate on the
platform) would lead to negative cross-platform spillovers.
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platform fees, and positive spillovers in platform investments.22 If the platforms’ instrument is

single-dimensional (i.e., one of these two choices are held fixed), then we can immediately conclude

from Proposition 2 and Proposition 3 that r∗ ≥ rSE ≥ rW or I∗ ≤ ISE ≤ IW .

More generally, if G is linear or non-linear but has a constant elasticity that is above 1, then

ŴSE(ai) is quasi-supermodularity for all ri ≥ rSE and Ii, which is sufficient for applying Proposi-

tion 3, so that the same conclusion applies to multi-dimensional instruments. Alternatively, using

the idea of negative proxied spillovers via the proxy instrument (ri − 1) Ii in seller participation

threshold k̄, Corollary 2 implies (r∗ − 1) I∗ ≥
(
rSE − 1

)
ISE ≥

(
rW − 1

)
IW , which then implies

k̄∗ ≤ k̄SE ≤ k̄W . That is, the mass of participating sellers is smaller in the equilibrium than in the

seller-excluded outcome, which in turn is smaller than in the total welfare benchmark.

� Price coherence. Price coherence (Edelman and Wright, 2015) refers to situations where

sellers set the same price across multiple platforms, even when these platforms charge different

transaction fees. This can reflect explicit price-parity contracts that the platform might use to

enforce this, incentives sellers may face to avoid undercutting on one channel (e.g., if they lower

their price on one platform, they will be demoted in rankings by other platforms), or some more

behavioral-type factors on the part of buyers which mean within the range of relevant fees, sellers

prefer to set uniform prices. Assuming there is a positive fee pass-through in seller pricing, multi-

homing sellers would then set prices that depend on the average transaction fees across platforms,

thus generating negative cross-platform spillovers via fees.

As an illustration, consider a modification to Application 1 where there is an ex-ante probability

β > 0 that any given product category is subjected to price coherence across all platforms. Given

that spillovers via seller participation has been discussed above, in what follows we assume that all

sellers have zero fixed costs and zero participation costs ki = 0 (i.e., distribution G is degenerate)

and PSi = 0. This simplification means that all sellers will always join at least one of the platforms.

Facing platform fees of fi (for i = 1, ...,m), a seller that joins platform i only or multihomes but

is not subjected to price coherence would therefore set its price at p∗ (fi) = arg max {(p− fi) q(p)}
and obtain a profit of π∗(fi) for each buyer on platform i. The corresponding transaction quantity

and buyer surplus are q∗(fi) and u∗(fi). For sellers that multihome on a subset φ ⊆ {1, 2, ...,m}
of at least two platforms and are subject to price coherence, their effective marginal cost is the

average fee

favg =
∑

i∈φ
sifi.

Thus, they set price at p∗ (favg) and obtain a profit of π∗(favg) for each buyer on each platform.

The corresponding transaction quantity and buyer surplus are q∗(favg) and u∗(favg).

All sellers will multihome on all platforms as long as the fee difference maxi,j |fi−fj | is not too

large, and that no platform has incentive to deviate and induce large fee differences if β is small

enough. Then given that only a fraction β of sellers are subjected to price coherence, we have

Ui = βu∗(favg) + (1− β)u∗(fi)

Ri = fi (βq∗(favg) + (1− β)q∗(fi)) si.

22In Online Appendix D.1, we construct an alternative version of Application 2 with spillovers based on seller
investment decisions, and show how it is essentially equivalent to the application considered here.
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Observe that both Ui and Ri are decreasing in favg: a higher fee would increase the common price

by sellers that are subjected to price coherence. Thus, there is a negative spillover, and we conclude

from Proposition 2 and Proposition 3 that the equilibrium transaction fee is above the seller-

excluded benchmark which in turn is above the welfare-maximizing benchmark: f∗ ≥ fSE ≥ fW .

� Building a direct channel. Whenever a platform increases its transaction fees (be it ad-

valorem or per-unit based), it induces sellers to be more willing to shift transactions onto a direct

channel to avoid the higher fee. This could involve building out a direct channel, after which fewer

transactions would be made on both the platform that increases its fees as well as rival platforms

as some buyers shift transactions onto the direct channel. This, therefore, can create negative

cross-platform spillovers via fees.

As an illustration, we modify Application 4 by endogenizing the fraction of sellers who own

direct channels.23 Specifically, suppose sellers face heterogenous cost κ to set up their direct

channel, where κ ∈ [0, κmax] is distributed according to CDF H with a strictly positive density. For

expositional simplicity, we again assume that all sellers have zero fixed costs and zero participation

costs ki = 0 (i.e., the distributionG is degenerate). Then, all sellers will always choose to multihome

on all platforms due to the fact that sellers do not face any restrictions in setting the on-platform

prices, face no other costs, and still keep a fraction of their revenues.

The post-participation pricing problem remains the same as the original Application 4. There-

fore, Ui = u∗. Meanwhile, a type-κ seller’s total profit is (1−
∑m

i=1 λirisi)π
∗ − κ if it has a direct

channel, and (1−
∑m

i=1 risi)π
∗ if it does not have a direct channel. Therefore, comparing payoffs,

a type-κ seller sets up a direct channel if and only if

κ ≤
∑m

i=1
(1− λi)risiπ∗ ≡ κ̄,

and so

Ri = ri (1− (1− λi)H(κ̄))π∗si.

Observe that Ri decreases when the “cross-channel effective fee difference” (1− λj)rj between

platform j and the direct channel increases, because a greater fee difference induces more sellers to

set up direct channels, i.e., a higher κ̄. There is negative spillovers in platform fees rj , and positive

spillovers in leakage prevention efforts λj . The latter reflects that when one platform puts more

effort into preventing leakage, less sellers will want to set up direct channels, which benefits rival

platforms.

Moreover, ŴSE(ai) is quasi-supermodular if H is weakly convex. Hence, we conclude from

Proposition 2 and Proposition 3 that r∗ ≥ rSE ≥ rW (the equilibrium commission is above the

seller-excluded benchmark) and λ∗ ≤ λSE (the equilibrium level of leakage prevention is below

the seller-excluded benchmark). Meanwhile, given that seller surplus is decreasing in λi, we know

λW ≤ λSE , and so the comparison between λ∗ and λW is in general ambiguous after allowing for

spillovers. Here, higher leakage prevention by each platform reduces the number of sellers willing

to invest in building direct channels. The resulting harm to sellers is not taken into account by

23A similar mechanism could arise in the case of Application 5 with mobile apps. When facing higher fees on one
platform, a developer may be more likely to broaden its business model from just relying on in-app purchases to
introduce third-party ads for users to unlock content, which could then be made available on other platforms as well,
shifting transactions away from in-app purchases on those platforms.
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platforms, which is a force leading to exessive leakage prevention. On the other hand, each platform

doesn’t take into account that their leakage prevention efforts benefit rival platforms by reducing

the number of sellers investing in direct channels, making the overall effect ambiguous.

Nonetheless, using the idea of negative proxied spillovers via the “cross-channel effective fee

difference”, Corollary 2 implies (1 − λ∗)r∗ > (1 − λSE)rSE and so κ̄∗ ≥ κ̄SE . Then, by changing

platforms’ decision variables and applying Proposition 2, we have that κ̄SE ≥ κ̄W , implying κ̄∗ ≥
κ̄W . That is, investment in direct channels by sellers is higher in the equilibrium than in the total

welfare benchmark.

4.2 Mixed homing configurations

Up till now we have focused on situations of competing platforms where all users on one side (say

buyers) only singlehome and all users on the other side (say sellers) are free to multihome. This is

because, strictly speaking, any changes in homing possibilities would constitute a departure from

the competitive bottleneck setting. Nonetheless, it may be useful to illustrate how alternative

homing possibilities can be interpreted in our framework with cross-platform spillovers. To do so,

we focus on the case the platform instrument is ai = fi, or some other type of transaction fee

charged to sellers.

� Some sellers are unable to multihome. If some sellers face frictions to multihome (e.g.,

because of contracts that mandate exclusivity) or otherwise are incentivised to singlehome (e.g.,

because of contracts they reward exclusivity such as market share discounts), then they may face a

choice between participating on one platform only or none at all. In other words, sellers view each

platform as a substitute: joining platform i would preclude the possibility of (or at least, reduce

the payoff from) joining platforms j 6= i.

In this case, a higher fi can not only make these sellers prefer to leave platform i, but also make

them more likely to join some other platform j given that if they don’t join platform i, then joining

platform j now becomes possible (under exclusive contracts) or more attractive (if they would then

have access to lower fees for having a high share of business on platform j). This would in turn

increase Uj and Rj , and so Proposition 3 predicts f∗ ≤ fSE , consistent with each platform’s fee

increase exerting a positive utility and revenue spillover on rival platforms.

It is important to note though, this mechanism is not simply driven by sellers voluntarily

choosing to singlehome. Sellers may singlehome because they can only make a profit on one of the

platforms, something we allowed for in our applications in case sellers face participation costs on

each platform that are not perfectly correlated. But that doesn’t mean the unprofitable option

imposes a competitive constraint on the platform they choose to join. The exception is if sellers

choose to singlehome because enough buyers multihome, the case we turn to next.

� Some multihoming buyers. If enough buyers are free to multihome, and do so in equi-

librium, then sellers can sometimes be better off only joining the lowest-fee platform even if they

could make some incremental revenue from participating as well on higher fee platforms from buy-

ers who singlehome on such platforms. This could make sense if doing so would divert sufficient

multihoming buyers to switch their transactions to the cheapest platform (i.e., the platform with

the lowest seller fee). Alternatively, sellers could remain on the higher-fee platforms but adjust

their prices in a way that diverts the multihoming buyers to use the cheapest platform.
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In this case, a higher fi induces more sellers to engage in such diversion strategies through

participation and pricing decisions, and so would tend to increase Rj , suggesting from Proposition

3 that f∗ ≤ fSE . However, depending on how sellers adjust their prices on platform j when

engaging in diversion pricing, Uj could increase or decrease, making the overall prediction in this

case ambiguous in general.

5 Other sources of non-equivalence

Aside from cross-platform spillovers discussed in Section 4, other factors could also lead to a

divergence between equilibrium outcomes and the seller-excluded outcome. We discuss two such

factors in this section. We assume that the no-spillover condition holds, i.e., Ui (a; s) = Ui (ai; s)

and Ri (a; s) = Ri (ai; s).

5.1 Monetizing via other buyer-side instruments

Our setup can easily accommodate the case of platforms charging a transaction-based fee to buyers

on top of buyer membership fees (as well as transaction fees to sellers). In such cases, provided

sellers are free to set prices to buyers, one would get neutrality of the platforms’ transaction-based

fees, so this would be equivalent to normalizing the buyer-side transaction fee to zero.

A more challenging case is that without a membership fee on the buyer side. Suppose instead

the platform gets a payoff per subscriber Ai on the buyer side, reflecting for instance “advertising”

revenue per subscriber. To establish this formally, we build upon the baseline model in Section 2.

Suppose platform profit and buyer net utility functions become Πi = (Ai − c) si +Ri and

Ui − P (Ai) + εi, (16)

where P (Ai) is the disutility faced by buyers given revenue extraction per buyer Ai by the platform.

As we will show below, this setup is equivalent to our current framework if P ′ = 1, i.e., the revenue

extraction technology has the same (marginal) efficiency as a membership fee — extracting one

dollar of extra revenue from a buyer results in buyers giving up one dollar’s worth of utility. More

generally though, extracting revenues through advertising or in other ways may be more efficient

than using membership fees (i.e. one dollar of extra revenue can be extracted from a buyer with

less than a one dollar reduction in utility, so P ′ < 1), or less efficient (P ′ > 1). In such cases, this

can affect the platforms’ optimal choices of instruments ai.

For simplicity, we assume a linear extraction technology as in Jullien and Bouvard (2022), so

that P ′ is constant, and focus on the case where each platform i’s instrument ai is a continuous

scalar. Suppose further that functions Ri and Ui are differentiable. In this case, each platform i’s

equilibrium instrument a∗ satisfies the first-order condition

1

mP ′
∂Ui(ai; 1/m)

∂ai
+
∂Ri(ai; 1/m)

∂ai
= 0. (17)

Observe that if P ′ > 1 (equivalent discussions apply to the case of P ′ < 1, and hence are omitted

below), platform i’s equilibrium instrument choice assigns a smaller weight on the buyer surplus

Ui, compared to the baseline model (P ′ = 1). This is intuitive. When the alternative monetization
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is less efficient, if a platform increases Ui by one unit, it can extract less than one unit of revenue

Ai while keeping buyer net utility Ui−P (Ai) constant, and so it optimally chooses ai to implement

a lower Ui than in the baseline model.

Meanwhile, from (14), in the seller-excluded benchmark, the outcome aSE satisfies the first-

order condition

dŴSE(ai)

dai
=
∂Ui(ai; 1/m)

∂ai
+m

∂Ri(ai; 1/m)

∂ai
+
(
1− P ′

) dA∗
dai

= 0, (18)

where A∗ is the equilibrium platform monetization for a given symmetric profile of platform instru-

ment (ai, ..., ai) ∈ Am and market shares are given by s = 1/m. Compared to the baseline model

(P ′ = 1), P ′ > 1 implies that the seller-excluded benchmark now additionally assigns a weight

on inducing platforms to choose a lower level of monetization on the buyer side, reflecting such

monetization is surplus-reducing. The magnitude of this new weight depends on the sensitivity of

the platforms’ monetization response dA∗/dai in the equilibrium. Meanwhile, in the total welfare

benchmark, the outcome aW satisfies the first-order condition

dŴ (ai)

dai
=
dŴSE(ai)

dai
+
∂ŜS(ai)

∂ai
,

where the only difference with (18) in the seller surplus term. As such, the conclusion from

Proposition 2 continues to hold.

In sum, in this setting, the divergence between a∗ and aSE now depends on which of the two

effects of P ′ 6= 1 above dominates, while the comparison between aSE and aW remain the same as

in the benchmark setting. Substituting (17) into (18) we obtain (19) in the following Proposition:

Proposition 4 Suppose that each platform i’s instrument ai is a continuous scalar, functions

Ri and Ui are differentiable, and ŴSE(ai) is strictly quasiconcave. If P ′ = 1, then a∗ = aSE.

Otherwise, a∗ ≥ aSE if and only if

(1− P ′)
(
dA∗

dai
− 1

P ′
∂Ui(a

∗; 1/m)

∂ai

)
≤ 0, (19)

where
dA∗

dai
= − 1

P ′
∂2Ui(a

∗; 1/m)

∂ai∂si
+
∂2Ri(a

∗; 1/m)

∂ai∂si
.

Moreover, if (19) holds and the total seller surplus function ŜS(ai) is weakly decreasing in ai, then

a∗ ≥ aW .

Under the condition in (19), allowing for the possibility that platforms prefer to monetize on

the buyer side via advertising rather than membership fees implies equilibrium instrument choices

a∗ will, if anything, be higher than the corresponding seller-excluded outcome.

In Online Appendix E we show that for most of our applications, dA∗i /dai = 0 in the equilibrium

when the distribution of seller fixed participation cost, G, is assumed to be the uniform distribution

on [0, kmax]. In such cases, condition (19) just depends on whether (1 − P ′)∂Ui∂ai
≥ 0 holds. In

particular, for platform instruments that reduce buyer surplus (∂Ui/∂ai ≤ 0) such as transaction
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fees, we have a∗ ≥ aSE (and so a∗ ≥ aW ) when such monetization is inefficient (P ′ > 1), and

a∗ ≤ aSE (making the comparison between a∗ and aW ambiguous) when such monetization is

efficient (P ′ < 1).24 Meanwhile, when G is non-linear but with a constant elasticity, if we take the

elasticity becoming sufficiently small so that seller participation becomes unresponsive to changes

in post-participation profits, then we show that dA∗i /dai → (1/P ′) ∂Ui/∂ai in the corresponding

equilibrium, and so (19) holds in the limit, meaning a∗ → aSE ≥ aW .

5.2 Myopic buyers

Suppose that buyers are “myopic”. Specifically, when deciding which platform to join they incor-

rectly account for their post-participation utility, for example not accounting for it at all or only

partially. To establish this formally, we build upon the baseline model in Section 2 by assuming

that the measure of buyers joining platform i, i.e., the counterpart of (3), is given by

si = Pr

(
δUi − PBi + εi ≥ max

j 6=i

{
δUj − PBj + εj

})
,

where 0 ≤ δ < 1 is a discount factor and so δUi−PBi is buyer’s (myopically) “perceived” net utility

on each platform i. Meanwhile, Ui captures their “true” utility, which enters the seller-excluded

benchmark and is relevant for a welfare analysis.

Following the same analysis as in Section 3 and given the no-spillover condition, the character-

izations of the equilibrium and the seller-excluded outcomes are, respectively, given by

a∗ ∈ arg maxai∈A
{
δ
mUi(ai; 1/m) +Ri(ai; 1/m)

}
aSE ∈ arg maxai∈A

{
1
mUi(ai; 1/m) +Ri(ai; 1/m)

}
.

(20)

Observe that Ui is under-represented in the choice of equilibrium a∗ relative to the seller-excluded

benchmark aSE . Following the same idea as Proposition 2, we have:

Proposition 5 (Myopic buyers). Suppose Ui(ai; 1/m) is weakly decreasing (increasing) in ai ∈ A

and one of the following conditions holds:

� The function ŴSE(ai) is quasi-supermodular in ai ∈ A.

� Platform instrument ai is a scalar, i.e., A ⊆R.

Then, A∗ ≥sso (≤sso)ASE. That is, the set of equilibrium instrument vectors is higher (lower)

than the set of seller-excluded instrument vectors in strong set order. If, in addition, the total

seller surplus function ŜS(ai) is weakly decreasing in ai, then A∗ ≥Wsso A.

Recall that we interpret a higher ai as corresponding to a lower total seller surplus SS. There-

fore, the corollary says that for instruments that decrease Ui and seller surplus (e.g., platforms

fees), then a∗ is above aSE . Together with Proposition 2 (which is unaffected by the factor δ),

we get a∗ ≥ aSE ≥ aW . Likewise, the reverse is true for instruments that increase Ui and seller

24In Online Appendix B we show (19) holds with equality for any P ′ > 0 in the additional application with
demand-side heterogeneity and competing sellers, so that a∗ = aSE ≥ aW in that case.
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surplus (e.g., investments). Intuitively, when buyers are myopic, platforms would not sufficiently

take into account buyer true utility in the equilibrium.25

6 Policy discussion

Even if there is strong competition between platforms to sign up buyers, our results show that

platform fees and other design choices such as first-party entry, self-preferencing, and leakage

prevention will be distorted from a welfare perspective, in a way that shifts surplus from sellers to

the platforms (and buyers). Whether such distortions are considered a policy problem depends on

the objectives the policymaker holds. If the ultimate objective is only buyer-surplus (or buyer and

platform surplus), then as Etro (2023) has shown in the context of fee setting, there may be no

concern. However, sellers (e.g., the app developers, merchants, creators, and advertisers that rely

on platforms to reach end-consumers) are platform customers too, and it is often their concerns

as much as those of end-users that regulators engage with. As such, our focus on the standard

benchmark adopted by economists, total welfare, would seem more appropriate.26

Beyond the many examples of distortions we’ve studied, the result that platforms ignore the

concerns of sellers other than to the extent they translate into benefits for singlehoming buyers

suggests other harms that may arise in competitive bottleneck settings. For instance, customer

support and other types of platform investments may be biased towards the buyer-side and away

from the seller-side of such platforms. The results also suggests any policy that only promotes

more competition for buyers (e.g., reduced switching costs between platforms on the buyer-side)

may not help address the underlying distortions. Similarly, a policy that attempts to induce

more platforms to compete, will not necessarily reduce the distortions found here. In the case

without spillovers, adding more platforms does not necessarily change the distortion between the

equilibrium and welfare-maximizing level of platform instrument choices in one direction or the

other. With spillovers, adding more platforms can make the distortion worse reflecting that each

platform tends to internalize less the effect of their choices on sellers’ overall participation choices.27

Given our results, an obvious policy solution to consider is regulating platform fees. Several

recent works have studied how this can be done in the context of a monopoly platform setting

(Gomes and Mantovani, 2022; Bisceglia and Tirole, 2022; Wang and Wright, 2023). However,

while such regulations may indeed increase welfare if done correctly, one of the points of our multi-

dimensional setting is to note the distortions are not limited to just platform fees. Thus, regulating

lower platform fees does not directly address other types of distortions, and indeed in some cases

could make them worse.

This suggests a superior approach may be to provide ways for sellers to side-step the bottleneck

problem. There are two ways that could be done. One way is to promote buyer multihoming by

reducing the cost of buyers participating on multiple platforms, thereby providing sellers with

25Relatedly, Etro (2023) focuses on buyer surplus in a specialized model on competition between mobile device
platforms, and shows that the existence of myopic buyers imply that the equilibrium may not maximize the actual
buyer surplus.

26Another approach is to focus on total user surplus (that of buyers and sellers), thus ignoring the profit of
platforms. We provide some analysis of this alternative in Online Appendix F, where for our various applications we
find similar results to those found for total welfare.

27We illustrate these results in Section G of the Online Appendix focusing on the choice of commissions in Appli-
cation 2.
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more than one platform through which they can reach the same buyers. If the platforms engineer

barriers or additional costs to multihoming, making sure such practices are ruled out would help

(Athey and Morton, 2022). However, sometimes there are inherent cost for buyers to multihome

(e.g., purchasing a second mobile device is costly), so achieving widespread multihoming on the

buyer side may be unrealistic.

Alternatively, or perhaps in addition, regulators can focus on making sure sellers are not denied

other ways to reach and transact with a platform’s unique buyers. In the context of mobile app

platforms this can be done by making it illegal for platforms to ban (or otherwise limit) alternative

app stores from being downloaded and installed by device users. This makes it more likely an

app developer could steer its users through an app store that is better for both its users and

itself. Similarly, it could become illegal for platforms to take actions that prevent or limit leakage,

either via the sellers’ own direct channels or via other cheaper platforms. This would increase the

feasibility of bypassing a platform that doesn’t offer sellers sufficient value. In the case of mobile

app platforms, this would mean making Apple’s and Google’s anti-steering provisions illegal, so app

developers would be able to provide customers with links to their other cheaper channels. It would

also involve allowing direct downloading of the developer’s app in the case of iOS, and allowing

digital content purchased elsewhere from a developer to be used inside the app on iOS regardless

of whether the app developer sells the same content via the App Store. Similarly, Apple’s and

Google’s tying of their payment solutions to their app stores could be made illegal, thus enabling

developers to have a direct relationship with their customers with respect to in-app purchases of

digital content (via either their own or a third-party payment solution). Notably, Articles 5(4),

5(5), 5(7) and 6(4) of the Digital Markets Act (DMA), which comes into force in Europe in 2024,

will enact all of these prohibitions and obligations.

7 Conclusion

We have provided a general framework to analyze competitive bottleneck settings, allowing for a

full range of pricing instruments on the seller-side and for platforms to make non-pricing design

choices as well (e.g., investment, first-party entry, self-preferencing, leakage prevention etc). We

also allowed for a quite general payoff structure for buyers and sellers, which captures a wide range

of microfoundations including settings in which platform fees get passed through to buyers.

We highlighted several sources of divergence between equilibrium choices and those in the

seller-excluded benchmark, in each case, providing conditions to help sign the direction of the

divergence, and the overall welfare effects of the equilibrium choices. These include spillovers (both

in buyer utility and platform revenue), the case where platforms use alternative monetization on

the buyer side such as advertising, and the case where buyers do not fully internalize their post-

participation surplus when deciding which platform to join. We also briefly explained how other

homing configurations such as partial multihoming on the buyer side can be understood in terms

of our spillover results.

Here we briefly mention some possible directions for further generalizing our framework and to

sign how the distortions in instrument choices may be affected as a result.

The current framework relies on buyers being ex-ante identical except for their taste for each
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platform. It would be interesting to see in what ways one can generalize results to allow for other

forms of heterogeneity among buyers such as in Rochet and Tirole (2003, 2006). However, one

potential complication of that setting is it would introduce new types of welfare distortions (e.g.,

the Spence-type distortions in Weyl (2010), and the displacement and scale distortions in Tan and

Wright (2021)) that may be orthogonal to the effects arising from classic competitive bottleneck

settings.

On the seller side, it would be interesting to analyze what happens when sellers are “strategic”

and can commit to their participation decisions, such that each is large enough that it might

internalize how its joining decision impacts buyers’ decision about which platform to join. We

abstracted from this by assuming buyers and sellers made their joining decisions simultaneously.

Finally, there are other interesting applications of this framework that remain to be explored.

Even sticking to our existing applications, there are many combinations of sets of platform in-

struments (we considered seven) and sources of spillovers (we considered three) that are left to

analyze. And once one considers applications to other verticals such as newspapers, video game

consoles, and prioritized internet service providers, there may be new instruments and new sources

of spillovers that are particularly relevant and which can be usefully analyzed in our framework.

8 Appendix

8.1 Proofs in Section 2

Proof. (Proposition 2). Suppose ŜS(ai) is weakly decreasing in ai (the weakly increasing case can be

proven similarly). We want to prove the sets of maximizers are such that

ASE ≡ arg max
ai∈A

ŴSE(ai) ≥ arg max
ai∈A

Ŵ (ai) ≡ AW (21)

in strong set order sense. Specifically, for any aSE ∈ ASE and aW ∈ AW , denote amax = aSE ∨ aW and

amin = aSE ∧ aW (by construction, amax ≥ aSE , aW ≥ amin), then we want to prove amax ∈ ASE and

amin ∈ AW . Suppose Ŵ (ai) is quasi-supermodular (note if ai is a scalar then this is trivially true). By

definition of aW ,

Ŵ (aW )− Ŵ (amin) ≥ 0

⇒ Ŵ (amax)− Ŵ (aSE) ≥ 0 (quasi-supermodularity of Ŵ )

⇒ ŴSE(amax)− ŴSE(aSE) + ŜS(amax)− ŜS(aSE)︸ ︷︷ ︸
≤0 because ŜS is weakly decreasing

≥ 0 (definition of Ŵ )

⇒ ŴSE(amax)− ŴSE(aSE) ≥ 0,

which implies amax ∈ ASE . Suppose ŴSE(ai) is quasi-supermodular instead of Ŵ (ai), then we can simply

reorder the steps of the proof above:

Ŵ (aW )− Ŵ (amin) ≥ 0

⇒ ŴSE(aW )− ŴSE(amin) + ŜS(aW )− ŜS(amin)︸ ︷︷ ︸
≤0 because SS is weakly decreasing

≥ 0 (definition of Ŵ )

⇒ ŴSE(aW )− ŴSE(amin) ≥ 0

⇒ ŴSE(amax)− ŴSE(aSE) ≥ 0 (quasi-supermodularity of ŴSE),
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which implies amax ∈ ASE . Likewise, by definition of aSE ,

ŴSE(aSE)− ŴSE(amax) ≥ 0

⇒ ŴSE(aSE)− ŴSE(amax) + ŜS(aSE)− ŜS(amax)︸ ︷︷ ︸
≥0 because ŜS is weakly decreasing

≥ 0

⇒ Ŵ (aSE)− Ŵ (amax) ≥ 0 (definition of Ŵ )

⇒ Ŵ (amin)− Ŵ (aW ) ≥ 0 (contrapositive of quasi-supermodularity of Ŵ ),

which implies amin ∈ AW . If ŴSE(a) is quasi-supermodular instead of Ŵ (a), then we can again reorder

the steps of the proof as shown previously.

8.2 Proofs in Section 4

Proof. (Proposition 3). We will focus on the case of negative cross-platform spillovers (the case of

positive spillovers can be proven similarly). In what follows we omit the market share profile argument

when expressing functions Ui(a; s) and Ri(a; s) given that we always set s = 1/m. Denote â(ai; a) ∈ Am

as a profile such that platform i is choosing instrument vector ai ∈ A while all other platforms j 6= i are

choosing the same instrument vector a ∈ A.

For any given ai ∈ A, denote

ŴSE(ai) = Ui(â(ai; ai)) +mRi(â(ai; ai)), (22)

which is just the SE objective function (10) after omitting components that are independent of platform

instrument vectors when s = 1/m. Using notations

Ẑ(ai; a) ≡ Ui (â(ai, a))− U−i (â(a, ai)) +mRi (â(ai, a))

ψ(ai; a) ≡ U−i (â(a, ai)) + Ui(â(ai, ai))− Ui (â(ai, a)) +mRi (â(ai, ai))−mRi (â(ai, a)) ,

we can expand (22) as

ŴSE(ai) = Ẑ(ai; a) + ψ(ai; a) for arbitrary a ∈ A, (23)

where the negative spillovers condition implies:

ai ≥ a⇒ ψ(ai; a) ≤ U−i (â(a, ai)) ≤ U−i (â(a, a)) = ψ(a; a). (24)

Using these notations and the definitions in (9) and (11), we get

A∗ =

{
a∗ ∈ A|a∗ ∈ arg max

ai∈A
Ẑ(ai; a

∗)

}
ASE =

{
aSE ∈ A|aSE ∈ arg max

ai∈A
ŴSE(ai)

}
.

We claim that A∗ ≥sso ASE . Specifically, for any aSE ∈ ASE and a∗ ∈ A∗, denote amax = a∗ ∨ aSE ,

and amin = a∗ ∧ aSE (by construction, amax ≥ a∗, aSE ≥ amin), then we want to prove amax ∈ A∗ and
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amin ∈ ASE . By definition of aSE ,

ŴSE(aSE)− ŴSE(amin) ≥ 0

⇒ ŴSE(amax)− ŴSE(a∗) ≥ 0 (quasi-supermodularity of ŴSE)

⇒ Ẑ(amax; a∗)− Ẑ(a∗; a∗) + ψ(amax; a∗)− ψ(a∗; a∗)︸ ︷︷ ︸
≤0 by (24)

≥ 0 (by (23))

⇒ Ẑ(amax; a∗)− Ẑ(a∗; a∗) ≥ 0,

which implies amax ∈ A∗. Likewise, by definition of a∗,

Ẑ(a∗; a∗)− Ẑ(amax; a∗) ≥ 0

⇒ Ẑ(a∗; a∗)− Ẑ(amax; a∗) + ψ(a∗; a∗)− ψ(amax; a∗)︸ ︷︷ ︸
≥0 by (24)

≥ 0

⇒ ŴSE(a∗)− ŴSE(amax) ≥ 0 (by (23))

⇒ ŴSE(amin)− ŴSE(aSE) ≥ 0 (contrapositive of quasi-supermodularity of ŴSE),

which implies amin ∈ ASE .

Proof. (Corollary 2). We will focus on the case of negative cross-platform spillovers (the case of positive

spillovers can be proven similarly). In what follows we omit the market share profile argument when

expressing functions Ui(ai, b−i; s) and Ri(ai, b−i; s) given that we always set s = 1/m. Denote b̂(bi; b) ∈ Rm

as a profile such that the proxy instrument equals bi = b(ai) for platform i and equals b for all other platforms

j 6= i.

By contradiction, suppose there exist a pair a∗ ∈ A∗ and aSE ∈ ASE such that b∗ = b(a∗) < b(aSE) =

bSE . Then

ŴSE(aSE) = Ui(a
SE , b̂(bSE ; bSE)) +mRi(a

SE , b̂(bSE ; bSE))

= Ui(a
SE , b̂(bSE ; b∗))− U−i(a∗, b̂(bSE ; b∗)) +mRi(a

SE , b̂(bSE ; b∗)) + U−i(a
∗, b̂(bSE ; b∗))

+Ui(a
SE , b̂(bSE ; bSE))− Ui(aSE , b̂(bSE ; b∗))︸ ︷︷ ︸

<0 by negative proxied spillovers and bSE>b∗

+mRi(a
SE , b̂(bSE ; bSE))−mRi(aSE , b̂(bSE ; b∗))︸ ︷︷ ︸

<0 by negative proxied spillovers and bSE>b∗

< Ui(a
∗, b̂(b∗; b∗))− U−i(a∗, b̂(b∗; b∗)) +mRi(a

∗, b̂(b∗; b∗)) + U−i(a
∗, b̂(b∗; b∗))

= ŴSE(a∗),

where the inequality is due to negative proxied spillovers and the fixed-point definition of

a∗ ∈ arg max
ai∈A

{
Ui(ai, b̂(b(ai); b

∗))− U−i(a∗, b̂(b(ai); b∗)) +mRi(ai, b̂(b(ai); b
∗))
}
,

thus contradicting the definition of aSE being a maximizer of ŴSE .

8.3 Proofs in Section 5

Proof. (Proposition 4). Given the linearity assumption, we write P (Ai) = P ′Ai. On the equilibrium

path, assuming all other platforms j 6= i set monetization level A∗ and instrument vector a∗, a deviating

platform i’s profit function is (Ai − c) si +Ri, where si = Φ (Ui(ai; ŝ)− U−i(a∗; ŝ)− P ′Ai + P ′A∗). Apply-
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ing the inversion technique in Section 3, we express platform i’s profit as a function of its choices of si and

ai:

Π(si, ai) =

(
Ui(ai; ŝ)− U−i(a∗; ŝ)− Φ−1(si) + P (A∗)

P ′
− c
)
si +Ri.

Differentiating and imposing symmetry,

dΠi

dai
|sym = 0⇒ 1

mP ′
∂Ui(a

∗; 1/m)

∂ai
+
∂Ri(a

∗; 1/m)

∂ai
,

which satisfies (17), which can be substituted into (18) to yield (19). Meanwhile,

dΠi

dsi
|sym = 0

⇒ A∗ = c+
1

P ′

(
1/m

Φ′ (0)
− ∂Ui(a

∗; 1/m)

∂si

)
− ∂Ri(a

∗; 1/m)

∂si
. (25)

Note that this equilibrium pricing equation applies not just at the equilibrium profile (a∗, ..., a∗) but it also

applies to arbitrarily symmetric profile of instruments (ai, ..., ai). Whenever this profile (ai, ..., ai) changes

symmetrically (i.e., in the maximization of the SE objective function), we get

dA∗i
dai

= − 1

P ′
∂2Ui
∂si∂ai

− ∂2Ri
∂si∂ai

. (26)

Proof. (Proposition 5). The proof of Proposition 3 applies after replacing U−i(ai; 1/m) with (1 −
δ)Ui(ai; 1/m) as it represents the divergence between the definitions of aSE and a∗ in this case. Then, the

case of decreasing Ui(ai; 1/m) is equivalent to the case of negative spillovers in the proof of Proposition 3
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Online Appendix: Competitive bottlenecks and platform spillovers

Tat-How Teh1 and Julian Wright2

In the following sections we provide additional workings and results referred to but not included in the

main paper.

A Asymmetric platforms and incomplete coverage on buyer side

Consider an environment with possibly asymmetric platforms and without necessarily a fully covered buyer-

side market. Let U0 be the exogenous net utility of the buyers’ outside option (of not joining any platform).

Our goal is to establish variants of Proposition 1 in this extension of our general environment, including the

one based on Armstrong (2006)’s approach. To do so, we assume throughout that the no-spillover condition

holds, i.e., Ui = Ui (ai; s) and Ri = Ri (ai; s).

The measure of buyers joining platform i is expressed as

si = Pr

(
Ui − PBi + εi ≥ max

j 6=i

{
Uj − PBj + εj , U0

})
= Pr

(
εi ≥ max

j 6=i

{
Uj − PBj − Ui + PBi + εj , U0 − Ui + PBi

})
≡ Φi

(
[Ui − PBi − Uj + PBj ]j 6=i, Ui − PBi − U0

)
,

where [Ui − PBi − Uj + PBj ]j 6=i is a (m− 1)-dimension vector of Uj − PBj − Ui + PBi for every j = 2, ...,m

such that j 6= i, while Φ is a function that is increasing in all of its m arguments and it reflects the

underlying distribution function F (·) for ε = (ε1, ..., εm). Then, for any given a = (a1, ..., am) ∈ Am and

PB = (PB1 , ..., P
B
m ) chosen, the market share profile s = (s1, s2, ..., sm) is pinned down by the simultaneous

fixed-point equation system:

si = Φi
(
[Ui (ai; s)− PBi − Uj (aj ; s) + PBj ]j 6=i, Ui (ai; s)− PBi − U0

)
for i = 1, ...,m. (27)

In what follows, we derive the equilibrium outcome. Denote the equilibrium buyer price profile as

PB∗ = (PB∗1 , ..., PB∗m ), the equilibrium instrument profile as a∗ = (a∗1, ..., a
∗
m) ∈ Am, and the equilibrium

buyer-side market share profile as s∗ = (s∗1, ..., s
∗
m) ∈ [0, 1]

m
. Without loss of generality, consider the

maximization problem of, say, platform 1. It chooses
(
a1, P

B
1

)
to maximize profit

Π1 =
(
PB1 − c

)
s1 +R1 (a1; s) ,

taking as given (a∗2, ..., a
∗
m) and (PB∗2 , ..., PB∗m ) chosen by other platforms. We want to reframe the problem

as platform 1 directly choosing the target market share s1 implementable by its fee PB1 , i.e., maximization

with respect to (a1, s1). To proceed, note that for any given (a1, a
∗
2..., a

∗
m), (PB∗2 , ..., PB∗m ), and s1, we can

implicitly pin down the implied buyer price by platform 1, denoted as

P̃B1 (a1,a
∗
−1,P

B∗
−1; s1)

and market share (s2, ..., sm) of other platforms using (27). Define a residual function β1 ≡ U1 (a1; s)− P̃B1 ,

1Division of Economics, Nanyang Technology University
2Department of Economics, National University of Singapore
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and substitute it into (27) to get

s1 = Φ1

(
[β1 − Uj (aj ; s) + PBj ]j 6=1, β1 − U0

)
si = Φi

(
(Ui (ai; s)− PBi − β1, [Ui (ai; s)− PBi − Uj (aj ; s) + PBj ]j 6=i6=1), Ui (ai; s)− PBi − U0

)
for i = 2, ...,m.

This system implicitly pins down β1 and (s2, ..., sm) as a function of (a1, a
∗
2..., a

∗
m), (PB∗2 , ..., PB∗m ), and s1.

Crucially, the system is independent of a1, meaning the residual function β1 and the market share (s2, ..., sm)

of other platforms are independent of a1 once s1 is held fixed. This means that we can write

P̃B1 (a1,a
∗
−1,P

B∗
−1, s1) = U1 (a1; s) + β1,

where β1 is independent of a1.

Then, platform 1’s problem is to choose (a1, s1) to maximize

Π1(a1, s1) =
(
P̃B1 − c

)
s1 +R1 (a1; s) (28)

= (U1 (a1; s) + β1 − c)s1 +R1 (a1; s) .

By the envelope theorem, the platform’s optimal choice of a1 ∈ A can be obtained by maximizing Π1 while

holding s constant at the equilibrium value s∗. Since this analysis applies to all platforms i = 1, ...,m, we

conclude that the equilibrium a∗ = (a∗1, ..., a
∗
m) satisfies

a∗i ∈ arg max
ai∈A

{s∗iUi(ai; s∗) +Ri(ai; s
∗)} for every i = 1, ...,m, (29)

where the set element notation takes into account the possibility of multiple maximizers.

� Armstrong (2006)’s approach. By Armstrong’s approach, to formulate the seller-excluded bench-

mark, we impose an arbitrarily fixed s′=(s′1, ..., s
′
m). Then, consider the seller-excluded welfare objective

function from (10):

WSE(a) =
∑

i=1,...,m

{(Ui − c) s′i +Ri}+
∑

i=1,...,m

Eis
′
i + U0(1−

∑
i=1,...,m

s′i),

where Ei = E[εi|i = arg maxi=1,...,m

{
Ui − PBi + εi, U0

}
] is the expectation of buyer match value on platform

i conditioned on i being chosen. Note that fixing s′ is equivalent to fixing (E1, ..., Em) in this environment.

Then, by the no-spillover condition, maximizing WSE(a) with respect to a gives

aSEi ∈ arg max
ai∈A

{s′iUi(ai; s′) +Ri(ai; s
′)} for every i = 1, ...,m, (30)

where the set element notation takes into account the possibility of multiple maximizers. Observe that (29)

and (30) have the same expression if we evaluate both of them at the same market share profile s′ = s∗.

That is, for given s′,

A∗ = ASE = arg max
ai∈A

{s′iUi(ai; s′) +Ri(ai; s
′)} ,

which corresponds to the result in Proposition 1.

� Symmetric but incomplete coverage on buyer side. Let us return to our approach of defining

the seller-excluded benchmark to examine how the market coverage assumption affects Proposition 1. To

do so, we impose symmetry in the analysis above. Let s̄ =
∑
i=1,...,m si, so (29) becomes

a∗ ∈ arg max
ai∈A

{
s̄∗

m
Ui(ai; 1

s̄∗

m
) +Ri(ai; 1

s̄∗

m
)

}
.

Meanwhile, imposing symmetry and dropping constant terms, the seller-excluded welfare objective that is

2



relevant for determining aSEi becomes

ŴSE(ai) = s̄Ui(ai; 1
s̄

m
)+mRi(ai; 1

s̄

m
)+s̄E

[
εi|i = arg max

i=1,...,m

{
Ui(ai; 1

s̄

m
)− PB + εi, U0

}]
−cs̄+(1−s̄)U0,

where PB is the symmetric equilibrium level of PBi for all platforms that comes out of the choice of PBi by

each platform i given an arbitrary (symmetrically imposed) instrument ai, while the total market coverage,

given symmetry, is

s̄ = Pr

(
Ui(ai; 1

s̄

m
) + max

i=1,...,m
{εi} − PB ≥ U0

)
.

That is, s̄ is given by the mass of buyers opting for one of the m platforms as opposed to the outside option.

There are two potential source of divergence (relative to the equilibrium outcome). First, the market

coverage levels are different, that is, s̄SE 6= s̄∗. Second, the last term in the expression of ŴSE means

that the SE objective places a weight on raising Ui(ai; 1
s̄
m )− PB and the market coverage s̄ (which can be

understood as an inverse measure of deadweight losses), while the platforms’ choice of ai does not take into

account the market coverage (by the envelope theorem).

Consider the special case where m = 2, Ui = Ū(ai) does not depend on the market share profile, and

Ri = R̄(ai)si. For instance, this is satisfied in the demand heterogeneity example of Section B if we take

m = 2. For such cases, we claim that with an additional assumption noted below on the distribution of εi,

then

A∗ = ASE = arg max
ai∈A

{
Ū(ai) + R̄(ai)

}
.

We next prove this claim. Recall the symmetry assumption implies functions Φ1 = Φ2 = Φ. In this

case, the market share profile s = (s1, s2) is explicitly pinned down by

s1 = Φ
(
Ū(a1)− PB1 − Ū(a2) + PB2 , Ū(a1)− PB1 − U0

)
s2 = Φ

(
Ū(a2)− PB2 − Ū(a1) + PB1 , Ū(a2)− PB2 − U0

)
.

Denote Φ′ = Φ′in + Φ′out where Φ′in and Φ′out are the derivatives of function Φ with respect to its first and

second arguments. Note that if we express P̃B1 as a function of s1, then
∂P̃B

1

∂s1
= −1

Φ′ by total differentiation.

In what follows, we assume Φ is log-concave, in the sense that

Φ(x, y)

Φ′(x, y)
is increasing in its second argument.

By standard results, this assumption is satisfied if e.g., ε1 and ε2 are i.i.d. with the same CDF F and a

log-concave density f . It is also satisfied if (ε1, ε2) arise from the standard Hotelling model setup with linear

transport costs but with outside buyers also uniformly and symmetrically located outside both ends of the

unit interval, possibly facing a different linear transport cost.

Returning to profit maximization problem in (28), the imposed condition on Ui and Ri allows us to

simplify it as Π1(a1, s1) =
(
P̃B1 − c+ R̄(a1)

)
s1. To solve for the equilibrium buyer price, the first-order

condition gives
dΠ1

ds1
|symmetry = 0⇒ PB∗ = c− R̄(a∗) +

Φ(0, Ū(a∗)− PB∗ − U0)

Φ′(0, Ū(a∗)− PB∗ − U0)
. (31)

Meanwhile,

A∗ = arg max
ai∈A

{
Ū(ai) + R̄(ai)

}
is immediate from (29). The resulting equilibrium profit is Π∗1 = Φ(0,Ū(a∗)−PB∗−U0)

Φ′(0,Ū(a∗)−PB∗−U0)
. Note this profit

expression applies for any arbitrary symmetrically imposed vector ai.

Moving to the seller-excluded welfare maximization, the pricing equation (31) implies that, for arbitrary
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(symmetrically imposed) vector ai, we have

Ū(ai)− PB∗ = c+ Ū(ai) + R̄(ai) +
Φ(0, Ū(ai)− PB∗ − U0)

Φ′(0, Ū(ai)− PB∗ − U0)
.

Log-concavity implies
d
(
Ū(ai)− PB∗

)
d
(
Ū(ai) + R̄(ai)

) ∈ (0, 1),

and so s̄ increases with Ū(ai)+R̄(ai). Then, rewrite ŴSE(ai) by splitting platform profit and buyer surplus,

ŴSE(ai) = 2Πi +BS

=
2Φ(0, Ū(ai)− PB∗ − U0)

Φ′(0, Ū(ai)− PB∗ − U0)
+ E

[
max
i=1,2

{
Ū(ai)− PB∗ + εi, U0

}]
,

which is increasing in Ū(ai)− PB∗, which in turn is increasing in Ū(ai) + R̄(ai). Therefore, we conclude

ASE = arg max
ai∈A

{
Ū(ai) + R̄(ai)

}
,

as required.

B Demand-side heterogeneity and competing sellers

In this section we provide an additional application beyond those provided in Section 2.2. This illustrates

how we can accommodate:

1. heterogeneity in demand across product categories;

2. competing sellers within product categories;

3. positive pass-through from platform fees into seller prices;

We do this in a setting with closed-form solutions. This allows us to directly compare the equilibrium

fees to the total welfare maximizing fees, as well as to the fees maximizing other possible objective functions.

Since we want to explore how pass-through affects the welfare results, we focus on an example where platform

i just charges a per-transaction fee fi to sellers and a lump-sum membership fee PBi to buyers. We also

characterize the outcome if the platforms cannot charge a lump-sum membership fee PBi but rather rely on

alternative monetization involving Ai as in Section 5.1.

There is a continuum of product categories with mass 1 indexed by the buyers’ interaction benefit

parameter v, where v ∈ [0, vmax] is drawn from some distribution G on [0, vmax]. There are n ≥ 1 potential

competing sellers in each product category. A representative buyer’s gross utility function for purchasing ql

units from each seller l = 1, .., n in a particular product category is

u (q1, ..., qn) = v

n∑
l=1

ql −
n

2

(1− θ)
n∑
l=1

q2
l +

θ

n

(
n∑
l=1

ql

)2
 ,

and θ ∈ [0, 1] is a measure of seller differentiation within the category. This is the model by Shubik and

Leviatan (1980).3 Then, buyer demand for seller l in category v is

qv =
1

n

(
v − pl

1− θ
+

θ

1− θ

n∑
l=1

pl
n

)
.

3Shubik, M., and Levitan, R. (1980). Market structure and behavior. Harvard University Press.
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We normalize sellers’ marginal costs to zero, and for simplicity, assume sellers face no fixed costs of partici-

pating on a platform.

Solving for the symmetric equilibrium between sellers yields the equilibrium price on platform i

p∗v (fi) = fi +
(1− θ)n

(2− θ)n− θ
(v − fi),

which implies a pass-through rate ρ ≡ ∂p∗v (fi) /∂fi = n−θ
(2−θ)n−θ , and ρ ∈

[
1
2 , 1
]
. The demand and profit

an individual seller gets in product category v from a representative buyer is q∗v (fi) = ρ
(
v−fi
n

)
, π∗v (fi) =

(1−θ)n2

n−θ q∗v (fi)
2
, and per-buyer utility in product category v is u∗v(fi) = n2

2 q
∗
v (fi)

2
. Once joined platform

i, each participating seller in product category v will set the price p∗v (fi) on platform i and transact with

each buyer on that platform once, with the representative buyer consuming q∗v (fi) units from such a seller.

Notice each seller’s profit π∗v (fi) is positive if and only if fi ≤ v. Therefore, in the absence of any seller

fixed costs of participation, if fi ≤ v, all n sellers in category v participate on platform i; if fi > v, none of

them participate on platform i. The measure of product categories where sellers participate on platform i

is 1−G (fi).

We are now ready to define the key functions Ui and Ri in (2) and (4). We have

Ui =

∫ vmax

fi

u∗v (fi) dG (v) .

Here fi affects buyer utility u∗v (fi) through the positive pass-through in sellers’ pricing, while fi also affects

how many product categories will be active, and so buyers’ utility via cross-side network effects. And the

platform’s revenue from transaction fees is

Ri = fi

∫ vmax

fi

nq∗v (fi) dG(v)si.

Note both Ui and Ri are independent of fj (when holding si fixed), thus satisfying the no spillover condition,

meaning the equilibrium fee characterized below corresponds to the seller-excluded outcome. As noted in

Section A, this result remains true even if we allow for incomplete coverage on the buyer side given that

Ui only depends on fi and Ri is proportional to si, provided m = 2 and the assumptions on (ε1, ε2) noted

there hold.

As in the general framework, consider a deviation platform i setting PBi 6= PB∗ and fi 6= f∗. Then, the

one-to-one relation between PBi and si (for given PB∗ and f∗ by platforms j 6= i) means we can reframe

platform i’s problem as choosing si and fi to maximize

Πi =
(
PBi − c

)
si +Ri

= (Ui − Uj − Φ−1 (si) + PBj − c)si +Ri.

Each platform’s optimal fee is therefore determined by

f∗ = arg max
fi

{
Uisi + fi

∫ vmax

fi

nq∗v (fi) dG(v)si

}
= arg max

fi

{∫ vmax

fi

(u∗v (fi) + nfiq
∗
v (fi)) sidG (v)

}
.

Assuming G (v) is linear on [0, vmax], the transaction fee in the equilibrium outcome (and seller-excluded

outcome) is

f∗ =

(
1− ρ
3− ρ

)
vmax =

(1− θ)n
3 (1− θ)n+ 2 (n− θ)

vmax.
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Note second-order conditions hold here: the first derivative of the objective above (using q∗v (fi) = 0 when

v = fi and
dq∗v(fi)
dfi

= − ρ
n ) is

∫ vmax

fi

n

(
nq∗v (fi)

dq∗v (fi)

dfi
+ q∗v (fi) + fi

dq∗v (fi)

dfi

)
dG (v)

=

∫ vmax

fi

n

(
(1− ρ) ρ

(
v − fi
n

)
− fi

ρ

n

)
dG (v) ,

which is point-wise decreasing in fi and hence the objective function is concave.

Ultimately the equilibrium fee is determined solely by the pass-through rate, with the fee decreasing as

the rate of pass-through increases. Since the pass-through rate is increasing in the degree of substitution

between sellers θ within each product category and the number of sellers n that compete in each product

category, an increase in either of these also decreases the equilibrium fee. This also highlights it is the

pass-through rate and not seller profits that drive the result. As we increase n, the equilibrium fee decreases

despite the fact total seller profit in each product category increases in n.

If θ = 0 and/or n = 1, so each seller is independent, then pass-through is at its lowest possible level

(ρ = 1/2) and the equilibrium fee is at its highest (f∗ = 1
5vmax). As θ → 1 for a fixed n, this converges to

the case with homogenous sellers, and pass-through ρ→ 1, and as a result f∗ → 0. With the per-transaction

fee fully passed through to buyers, the platforms do not benefit from inflating the fee above cost given in

the end they are just competing for buyers. Finally, even as n → ∞, so each individual seller’s profit goes

to zero, we find f∗ → 1−θ
5−3θvmax, which remains positive for θ < 1, since pass-through remains strictly less

than one in this case and total seller profit in each product category does not go to zero.

We can compare the equilibrium fee to various welfare benchmarks, and calculate the associated welfare

loss. Ignoring terms that don’t depend on the per-transaction fee fi, total welfare created from transactions

on platform i is

WT (fi) =

∫ vmax

fi

(u∗v(fi) + nπ∗v (fi) + nfiq
∗
v (fi)) sidG (v) .

Note that platform i’s buyer price PBi cancels out as it represents a pure transfer between buyers and the

platform. The integrand term (u∗v(fi) + nπ∗v (fi) + nfiq
∗
v (fi)) si is just the gross surplus the representative

buyer gets from transactions in product category v on platform i. This is clearly non-negative and strictly

decreasing in fi for all v ≥ fi. It follows that the fee that maximizes WT must involve fW ≤ 0. Indeed,

without any constraint on negative fees, the fee maximizing total welfare is

fW = − (1− θ)n
(3− θ)n− 2θ

vmax ≤ 0.

Given our requirement that fi ≥ 0, the constrained efficient fee is then fW = 0.4

There are two types of inefficiency caused by the seller-excluded outcome. First, fewer sellers join

in the seller-excluded outcome, so there is efficiency loss from lost transactions from the missing sellers.

Second, f∗ > fW = 0 results in sellers that do join setting their prices inefficiently high, decreasing the

quantity demanded. The fraction of total transaction welfare lost in the equilibrium when compared to total

transaction welfare obtainable at fW = 0 is given by

WT
(
fW
)
−WT (f∗)

WT (fW )
=

(1− ρ)
2 (

26− 9ρ+ ρ2
)

(2− ρ) (3− ρ)
3 .

As can be seen, this welfare loss measure only depends on the pass-through rate ρ, and indeed, it is decreasing

in that rate. The relative loss varies from no loss up to a loss of 29
125 of the relevant welfare as the pass-through

4One reason negative fees may not be viable is they could induce sellers to fabricate fake transactions to generate
payments from the platform.
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rate ρ varies from 1 down to 1
2 .

Let’s now consider the fee that maximizes other objectives.

1. Total user surplus: An alternative welfare benchmark that has been used in platform contexts (Rochet

and Tirole, 2011) is total user surplus (total buyer and seller surpluses, ignoring the profit of the

platform). Focusing only on terms that depend on fi, this is the same as WT (fi) above. This reflects

the equilibrium buyer membership fee for platform i is one-for-one decreasing in its seller fee revenue

per buyer attracted; i.e.,

PBi = c+ t− fi
∫ vmax

fi

nq∗v(fi)dG(v).

Thus,

WTUS (fi) =

∫ vmax

fi

(u∗v(fi) + nπ∗v (fi)) dG (v) si + PBi si

=

∫ vmax

fi

(u∗v(fi) + nπ∗v (fi) + nfiq
∗
v(fi)) dG (v) si − (c+ t) si,

where we have ignored buyers’ transport costs which do not depend on the level of fi given the

platforms are symmetric.

2. Buyer surplus. Focusing only on terms that depend on fi, this is the same as WTUS without the term

for sellers’ profit nπ∗v (fi), and so equals

WB (fi) =

∫ vmax

fi

(u∗v(fi) + nfiq
∗
v (fi)) dG (v) .

This is the same objective function that each platform maximizes. Thus, f∗ also maximizes buyer

surplus. However, in this two-sided setting, sellers are customers of the platforms too, so there is no

reason not to consider their interests. Moreover, this ignores any of the sources of spillovers discussed

in Section 4.1, as well as myopic buyers and different buyer monetization methods discussed in Section

5, which can distort the equilibrium fee from the level maximizing buyer surplus.

3. Platform transaction fee revenue. If each platform just maximizes transaction fee revenue, it will set

fi to maximize ∫ vmax

fi

nfiq
∗
v (fi) dG (v)

which implies

fR =
vmax

3
> f∗

and
WT

(
fW
)
−WT

(
fR
)

WT (fW )
=

26− 19ρ

27 (2− ρ)
,

so the loss varies from 7
27 to 11

27 of the relevant welfare as the pass-through rate ρ varies from 1 down

to 1
2 .

Finally, we consider the two alternative sources of deviations from the seller-excluded outcome studied

in Section 5.

1. In case platforms extract revenue on the buyer side with the alternative instrument Ai that can be

more efficient than lump-sum membership fees (P ′ < 0) or less efficient (P ′ > 0) as in Section 5.1, we

calculate f∗ using (17) and calculate fSE using (18) and dAi

dfi
from Proposition 4. This implies

f∗ = fSE = max

{
(P ′ − ρ) vmax

3P ′ − ρ
, 0

}
,
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where f∗ is increasing in P ′.

2. In case buyers discount their surplus from transactions by 0 < δ < 1 when making their decision over

which platform to join, as in Section 5.2, then using (20) we find

f∗ =
(1− δρ) vmax

3− δρ
>

(1− ρ) vmax

3− ρ
= fSE ,

so the equilibrium fee is inflated above the seller-excluded benchmark. The extent of this “inflation”

increases in the degree to which buyers discount their surplus from transactions (i.e. the lower is δ).

C Details for Sections 2.2 and 3.3

� Application 1 (Two-part tariffs). As stated in the main text, Ŵ is clearly decreasing in platform

fees
(
fi, P

S
i

)
.

� Application 2 (Platform investment). Imposing symmetry and dropping constant terms, the

total welfare objective function that is relevant for determining aWi is

Ŵ = Ii(u
∗ + π∗)G

(
k̄i
)
−m

∫ k̄i

kmin

kdG (k)− C(Ii),

where k̄i ≡ (1− ri) Iiπ
∗

m . Then

dŴ

dri
= −Ii(u∗ + riπ

∗)g
(
k̄i
) Iiπ∗
m

< 0,

Thus, dWi/dri is single-crossing in Ii. Meanwhile, Ŵ is non-monotonic in Ii, and so to establish single-

crossing, we look at the cross-derivative:

d2Ŵ

dIidri
= −2 (u∗ + riπ

∗) g
(
k̄i
) Iiπ∗
m
− Ii(u∗ + riπ

∗)
(1− ri)π∗

m
g′
(
k̄i
) Iiπ∗
m

= −

(
2 + k̄i

g′
(
k̄i
)

g
(
k̄i
) ) (u∗ + riπ

∗)
Iiπ
∗

m
g
(
k̄i
)
,

which is negative if elasticity of g is greater than −2, a sufficient condition for which is that G is weakly con-

vex. Thus, dWi/dIi is single-crossing in ri, and we conclude Ŵ satisfies quasi-supermodularity in (ri,−Ii).
� Application 3 (First-party entry and self-preferencing). Imposing symmetry and dropping

constant terms, the total welfare objective function that is relevant for determining aWi is

Ŵ =
(
u∗ + π∗ + αei

(
li∆

sp + (1− li) ∆fp
))
G
(
k̄i
)
−m

∫ k̄i

kmin

kdG (k) ,

where k̄i = (1− ri)(π∗ − αei(π∗ − (1− li)πd)) 1
m . Observe that k̄i is decreasing in ri, ei, and li.

Define ∆sp = πsp +usp−π∗−u∗ and ∆fp = πfp +πd +ud−π∗−u∗ as the ex-post efficiency gain from

first-party entry with and without self-preferencing. Recall that we assume ∆fp > ∆sp. Then,

dŴ

dri
= (u∗ + π∗ + αei

(
li∆

sp + (1− li) ∆fp
)
−mk̄i)︸ ︷︷ ︸

>0 because mk̄i<(1−ri)π∗

g
(
k̄i
) dk̄i
dri

< 0;
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while

dŴ

dli
=
(
u∗ + π∗ + αei

(
li∆

sp + (1− li) ∆fp
)
−mk̄i

)
g
(
k̄i
) dk̄i
dli

+ αei
(
∆sp −∆fp

)
G
(
k̄i
)
< 0

because ∆fp > ∆sp; and

dŴ

dei
=
(
u∗ + π∗ + αei

(
li∆

sp + (1− li) ∆fp
)
−mk̄i

)
g
(
k̄i
) dk̄i
dei

+ α
(
li∆

sp + (1− li) ∆fp
)
G
(
k̄i
)
< 0

because ∆fp > ∆sp is not too large.

� Application 4 (Leakage prevention). As stated in the main text, Ŵ is clearly decreasing in

platform fees (ri , λi).

� Application 5 (App tracking). As noted in the text, a typical seller on platform i chooses pi to

maximize ∑
i∈φ

(
(1− ri) piq(pi)(1−H(pi)) + πa (1− τi)

∫ pi

0

q(z)dH(z)

)
si.

Assuming the seller objective function is strictly quasiconcave, then by additive separability, the optimal

price p∗i satisfies FOC

p∗i =
πa (1− τi)

1− ri
+

(
1 + p∗i

q′(p∗i )

q(p∗i )

)
1−H(p∗i )

h(p∗i )
.

Observe that p∗i is an increasing function of 1−τi
1−ri as claimed in the text. That is, sellers set a higher price

for their apps (to divert buyers to watch ads) when ads becomes more profitable relative to their share of

transacton revenue 1− ri. To check strict quasiconcavity of the seller objective function, notice dπ/dpi has

the same sign as

− pi +
πa (1− τi)

1− ri
+ (1 + eq)

1−H(pi)

h(pi)
, (32)

where eq ≡ pi q
′(pi)
q(pi)

< 0 is elasticity of q(.). By standard results, eq is weakly decreasing in pi if q(.) is weakly

log-concave or admits constant-elasticity. Therefore, as long as (1 + eq) > 0 then we know (1 + eq)
1−H(pi)
h(pi)

is decreasing in pi by log-concavity of 1 − H, and so (32) is always decreasing in pi, which establishes

strict-quasiconcavity.

Imposing symmetry and dropping constant terms, the total welfare objective function that is relevant

for determining aWi is

Ŵ = U0(p∗i )G
(
k̄i
)

+ riR0(p∗i )G
(
k̄i
)

+m

∫ k̄i

0

(k̄i − ki)dG,

where

U0(p∗i ) =

∫ p∗i

0

u(q(z))− zq(z)dH(z) +

∫ ∞
p∗i

u(q(p∗i ))− p∗i q(p∗i )dH(z)

R0(p∗i ) = p∗i q(p
∗
i )(1−H(p∗i ))

k̄i =
(1− ri)
m

p∗i q(p
∗
i )(1−H(p∗i )) +

πa (1− τi)
m

∫ p∗i

0

q(z)dH(z).

To establish quasi-supermodularity, we reframe the platform’s problem as choosing ai = (ri,−p∗i ), where

τi = τ(ri, p
∗
i ) = 1 + ψ(p∗i )

(
1− ri
πa

)
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and

ψ(p∗i ) ≡ (1 + eq)
1−H(p∗i )

h(p∗i )
− p∗i < 0

is strictly decreasing in p∗i by the properties on (32) as established above. Then

1

G
(
k̄i
) dŴ
dri

= (U0(p∗i ) + riR0(p∗i ))
g
(
k̄i
)

G
(
k̄i
) dk̄i
dri

+m
dk̄i
dri

< 0

for all p∗i because dk̄i
dri

= − 1
1−ri k̄i < 0. Thus, dWi/dr

∗
i is single-crossing in p∗i , as required. Likewise,

1

G
(
k̄i
) dŴ
dp∗i

=

(
dU0

dp∗i
+
dR0

dp∗i
ri

)
+ (U0(p∗i ) + riR0(p∗i ))ϕ

(
k̄i
) dk̄i/dp∗i

k̄i
+m

dk̄i
dp∗i

where ϕ(x) ≡ xg(x)
G(x) is the elasticity of G with respect to its argument. If we impose constant-elasticity

G (k) =
(

k
kmax

)ϕ
on [0, kmax], and let ϕ→ 0, then

1

G
(
k̄i
) d2Ŵ

dp∗i dri
→ dR0

dp∗i
+m

d2k̄i
dp∗i dri

< 0

because dR0

dp∗i
< 0 by (32), and

d2k̄i
dp∗i dri

= − 1

1− ri
dk̄i
dp∗i

=
1

m
ψ′(p∗i )

∫ p∗i

0

q(z)dH(z) < 0.

Thus, dWi/dp
∗
i is single-crossing in ri, as required.

D Details for Section 4.1

We provide the additional details referred to for each of the sources of spillovers in Section 4.1.

D.1 Within-seller economies of scale

� Quasi-supermodularity. Given symmetry and after dropping constant terms, we have k̄i =

(1− ri) Iiπ∗ and

ŴSE = Ii (u∗ + riπ
∗)G

(
k̄i
)
− C (Ii)

dŴSE

dri
= Iiπ

∗G
(
k̄i
)
− Ii (u∗ + riπ

∗) Iiπ
∗g
(
k̄i
)
.

dŴSE

dIi
= (u∗ + riπ

∗)G
(
k̄i
)

+ Ii (u∗ + riπ
∗) (1− ri)π∗g

(
k̄i
)
− C ′ (Ii) .

To establish quasi-supermodularity, we will establish pairwise single crossing in ai = (ri,−Ii) for all ai ≥
min{aSE , a∗}. We impose constant-elasticity G:

G (k) =

(
k

kmax

)ϕ
on [0, kmax] ,

so that g(k) = ϕ
kϕmax

kϕ−1, and assume ϕ ≥ 1. Note ϕ = 1 corresponds to linearity.

We first show dŴSE

dri
is single-crossing-from-above in Ii for all Ii. Dropping the common factor I2

i g
(
k̄i
)
,
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it suffices to show the following is weakly decreasing in Ii:

1

Ii

G
(
k̄i
)

g
(
k̄i
) − (u∗ + riπ

∗)

= (1− 2ri)π
∗ − u∗,

which is independent (hence weakly decreasing) in Ii. Notice the analysis also means

rSE = max

{
1

2
− u∗

2π∗
, 0

}
,

which is independent of Ii. Therefore, the negative spillover logic for the scalar case immediately im-

plies rSE ≤ r∗. We then show dŴSE

dIi
is decreasing (hence single-crossing-from-above) in ri for all ri ≥

min{rSE , r∗}. Using the functional form of G and simplifying,

dŴSE

dIi
=

2ϕ

kϕmax
((1− ri) Iiπ∗)ϕ−1︸ ︷︷ ︸

decreasing in ri given ϕ≥1

× (u∗ + riπ
∗) (1− ri)︸ ︷︷ ︸

decreasing in ri for ri≥rSE

Iiπ
∗ − C ′ (Ii) ,

which is decreasing for all ri ≥ rSE = min{rSE , r∗}. Thus, we conclude ŴSE(ai) obeys quasi-supermodularity

in ai = {ri,−Ii} for all ai ≥ min{aSE , a∗} = (min{rSE , r∗},min{−ISE ,−I∗}).

� Proxied-spillover approach. It remains to check the welfare comparison. We note that, given

symmetry and after dropping constant terms, we have

ŴSE(ai) = Ii (u∗ + riπ
∗)G

(
k̄i
)
− C (Ii)

Ŵ (ai) = ŴSE(ai) +

∫ k̄i

kmin

(k̄i − k)dG (k) ,

which have the same expressions as Application 2 without spillovers. Observe that seller surplus is fully

summarized by k̄i = (1− ri) Iiπ∗, and so the logic of Proposition 2 implies (1− rSE) ISE ≥ (1− rW ) IW

and k̄SE ≤ k̄W .

� Alternative specification: seller invesment. Consider the model of Application 2 where platform

i’s investment Ii scales up the buyer’s gross utility obtained from transacting with any seller. As an

alternative source of within-seller economies of scale, suppose sellers can now choose how much to invest

to raise their product quality. Assume, as seems most natural, a seller’s investment in its product is a

complement to each platform’s investment in helping buyers transact with sellers. Thus, the gross utility

of buyers is u (qi) IiIs, where Is is a seller’s investment with the corresponding cost function K(Is). As is

standard, we assume K is increasing and strictly convex, with boundary conditions limIs→∞K ′(Is) = ∞
and K ′(0) = 0 so that each seller’s optimal investment is unique, strictly positive, and finite. In order to

show spillovers can arise absent any fixed participation cost or source of seller heterogeneity, assume there

are no fixed costs for sellers to participate and all sellers (measure one in total) will therefore participate in

equilibrium.

Defining the seller’s quality-adjusted price p̂i = pi
IiIs

, each seller sets p̂i to maximize (1− ri) IiIsp̂iqi (p̂i).

Let the resulting profit maximizing price be denoted p̂∗, which note doesn’t depend on ri, Ii or Is. Therefore,

we know each seller’s optimal investment maximizes

π =
∑m

i=1
(1− ri) Iisiπ∗Is −K(Is),

11



where π∗ = p̂∗q (p̂∗). A seller’s optimal investment is I∗s satisfying the first-order condition∑m

i=1
(1− ri) Iisiπ∗ = K ′(I∗s )

and is increasing in (1− ri) Ii on each platform i.

We have

Ui = IiI
∗
su
∗

Ri = riIiI
∗
sπ
∗si − C (Ii) .

Again, Ui and Ri are increasing in Ij and decreasing in rj because both a higher platform investment and a

lower commisson result in a higher Is chosen by the seller. Moreover, since K ′ is assumed strictly increasing,

we can take the inverse of it, which is an increasing function, that plays the same role of G in Application

2. If this inverse function is denoted (K ′)−1, then

I∗s = (K ′)−1
(∑m

i=1
(1− ri) Iisiπ∗

)
,

and replacing G
(
k
)

with (K ′)−1
(
k
)

in the existing Application 2, yields essentially the same specification

here. Thus, from Proposition 3, we still have that r∗ > rSE and I∗ ≤ ISE in case we consider each choice

holding the other fixed, and in the multidimensional case, we have I∗s ≤ ISEs .

D.2 Price coherence

� Quasi-supermodularity. The condition trivially holds because ai = fi is one-dimensional.

� Verify equilibrium construction. We verify that all sellers will multihome on all platforms as long

as the fee difference maxj 6=i |fi − fj | is not too large, and that the platforms have no incentive to deviate

and induce large fee differences if β is small enough. Given the symmetry assumption, it suffices to focus

on the case where platform i sets fi 6= f∗ while all other platforms j 6= i set fj = f∗.

We can analyze an individual seller’s decision on whether to multihome. Consider first fi ≤ f∗. Clearly,

all sellers who are not subjected to price coherence would prefer to multihome. For the sellers subjected

to price coherence, multihoming is better than singlehoming on the higher fee platforms (platform j 6= i)

because π∗(favg) > π∗(f∗)(1 − si) and π∗(.) is a decreasing function. Meanwhile, multihoming is better

than singlehoming on the lower fee platform (platform i) if and only if

π∗(favg) > π∗(fi)si,

which holds if and only if the fee difference f∗ − fi is small enough. We verify ex-post that platforms have

no incentive to set such fees when β is sufficiently small, and so all sellers multihome in the equilibrium,

with a fraction β of them subjected to price coherence.

We first pin down the equilibrium transaction fee f∗ which, assuming all sellers multihoming on all

platforms, satisfies the FOC: (
∂Ui
∂fi
− ∂U−i

∂fi

)
1

m
+
∂Ri
∂fi

= 0

⇐⇒ (1− β)u∗(f∗)′

m
+ q∗(f∗) + f∗

(
1− β

m

)
dq∗(f∗)

df
= 0,

which is increasing in β.

Suppose platform i wants to deviate by choosing (fi, P
B
i ) 6= (f∗, PB∗) to induce some sellers to single-

home. Recall this necessarily requires fi < f∗. Note this is applicable only to the mass β of sellers that are

12



subjected to price coherence. A successful deviation requires

π∗(sifi + (1− si)f∗) < π∗(fi)si.

Let us denote the maximum deviation fee as fdev, which we know is strictly below f∗ as long as si < 1 (i.e.,

buyer-side heterogeneity is not too small), for all β ≥ 0.

With this undercutting strategy, buyers expect utility difference

Ui − U−i = u∗(fdev)− (1− β)u∗(f∗) + PBi − PB∗

and the deviation platform profit is

Πdev = max
PB

i ;fi≤fdev
(PBi − c+ fdevq∗(fdev))Φ(u∗(fdev)− (1− β)u∗(f∗) + PBi − PB∗).

Observe that the equilibrium platform profit can be expressed as

Π∗ = (PB∗ − c+ f∗q∗(f∗))
1

m

= max
PB

i ;fi
(PBi − c+ fi (βq∗(favg) + (1− β)q∗(fi)))Φ((1− β) (u∗(fi)− u∗(f∗)) + PBi − PB∗). (33)

Therefore, if β → 0, then the two objective functions coincide. Assuming that the objective function in (33)

is strictly quasiconcave, the constraint of fdev < f∗ implies Πdev < Π∗.

D.3 Building a direct channel

� Quasi-supermodularity. Given symmetry and after dropping constant terms, we have

ŴSE = ri (1− (1− λi)H(κ̄))π∗,

where κ̄ = (1− λi)riπ∗. Then

dŴSE

dri
= (1− (1− λi)H(κ̄))π∗ − ri ((1− λi)π∗)2

h(κ̄)

dŴSE

dλi
= riH(κ̄)π∗ + (riπ

∗)
2

(1− λi)h(κ̄) ≥ 0.

To establish quasi-supermodularity, we will establish pairwise single crossing in ai = (ri, λi).

We first show dŴSE

dri
is single-crossing-from-below in λi for all λi. Dropping the common factor π∗h(κ̄),

it suffices to show the following is weakly increasing in λi:

1− (1− λi)H(κ̄)

π∗h(κ̄)
− ri(1− λi)2

=
κmax

ϕπ∗κ̄
−
(

1− λi
π∗

)
κ̄− ri(1− λi)2,

which is indeed increasing in λi if h is weakly increasing (i.e., weakly convex H). Thus, we conclude ŴSE(ai)

obeys quasi-supermodularity in ai = {ri, λi}.

� Proxied-spillover approach. It remains to show κ̄SE ≤ κ̄W . Recall that

ŜS(ri, λi) =

∫ κmax

0

max

{(
1−

m∑
i=1

λirisi

)
π∗ − κ̄,

(
1−

m∑
i=1

risi

)
π∗

}
dH (κ) ,

13



which can be written as

ŜS(ri, κ̄) =

∫ κmax

0

(1−mrisi)π∗ + max {κ̄− κ, 0} dH (κ) ,

which is decreasing in ri and increasing in κ̄, and so decreasing in vector (ri,−κ̄). By reframing ai = (ri,−κ̄)

in the seller-excluded welfare and total welfare maximizations, Proposition 2 implies aSE ≥ aW , and so

κ̄SE ≤ κ̄W .

E Details for Section 5.1

We want to evaluate (19) for each of our applications. We first prove the following technical claims that

repeatedly used in most of the applications below.

Lemma 1 Suppose
∂2Ui
∂si∂ai

=
1

si

∂Ui
∂ai

and
∂2Ri
∂si∂ai

=
2

si

∂Ri
∂ai

for any ai. Then, dA∗i /dai = 0 when evaluated at the symmetric equilibrium ai = a∗. Therefore, (19) holds

(that is, a∗ ≥ aSE) if and only if

(1− P ′)∂Ui(a
∗; 1/m)

∂ai
≥ 0.

Proof. (Lemma 1). For given ai, recall from the definition in (26) that

dA∗i
dai

= − 1

P ′
∂2Ui
∂si∂ai

− ∂2Ri
∂si∂ai

.

By the supposition,
dA∗i
dai

= − 2

si

(
1

2P ′
∂Ui
∂ai

+
∂Ri
∂ai

)
which equals to zero when evaluated at ai = a∗ and s = 1/m due to the FOC definition of a∗. Then,

applying Proposition 4, (19) holds if and only if

(1− P ′)∂Ui(a
∗; 1/m)

∂ai
≥ 0.

Lemma 2 Suppose
∂2Ui
∂si∂ai

→ 0 and
∂2Ri
∂si∂ai

→ 1

si

∂Ri
∂ai

for any ai. Then (19) holds in equality in the limit (that is, a∗ → aSE).

Proof. (Lemma 2). By the supposition,

dA∗i
dai
≡ − 1

P ′
∂2Ui
∂si∂ai

− ∂2Ri
∂si∂ai

→ − 1

si

∂Ri
∂ai

which equals to 1
P ′

∂Ui

∂ai
when evaluated at ai = a∗ and s = 1/m due to the FOC definition of a∗. Then, (19)

becomes

(1− P ′)
[
dA∗i
dai
− 1

P ′
∂Ui(a

∗; 1/m)

∂ai

]
→ 0.
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In what follows, we assume throughout

G (k) =

(
k

kmax

)ϕ
on [0, kmax] , (34)

where ϕ > 0 is constant elasticity of distribution G with respect to its argument, i.e., ϕ = kg(k)
G(k) . We

normalize kmax = 1 to avoid carrying additional notation which does not change any results. For each

application below, we will focus on ϕ = 1 (linear G) and ϕ→ 0 (sufficiently inelastic G).

� Application 1. Consider ϕ = 1, so

Ui = u∗ (fi)
(
π∗ (fi) si − PSi

)
Ri =

(
fiq
∗ (fi) si + PSi

) (
π∗ (fi) si − PSi

)
.

For instrument ai = PSi we have ∂2Ui

∂si∂PS
i

= 0, and so
dA∗i
dPS

i
= − ∂2Ri

∂si∂PS
i

. Then,

[
dA∗i
dPSi

− 1

P ′
∂Ui
∂PSi

]
P s

i =P s∗
i ,si=1/m

= − ∂2Ri
∂si∂PSi

+ 2
∂Ri
∂P si

= −4PSi ≤ 0,

where the first equality uses the FOC definition of P ∗i ( 1
m
∂Ui

∂P s
i

+ ∂Ri

∂P s
i

= 0) and the second equality uses

symmetry and

∂Ri
∂PSi

= π∗ (fi) si − fiq∗ (fi) si − 2PSi and
∂2Ri
∂si∂PSi

= π∗ (fi)− fiq∗ (fi) .

Therefore, (19) holds if and only if

0 ≥ (1− P ′)
[
dA∗i
dPSi

− 1

P ′
∂Ui
∂PSi

]
⇐⇒ P ′ < 1.

This implies PS∗i ≥
(
PSi
)SE

if P ′ < 1 and PS∗i ≤
(
PSi
)SE

if P ′ > 1. Notice this is opposite to most other

cases considered below— whereby (19) holds if and only if P ′ > 1.

For instrument ai = fi, we focus on the case of PSi = 0 since otherwise (19) remains ambiguous even

if P ′ > 1 or P ′ < 1. Then Ui = u∗ (fi)π
∗ (fi) si and Ri = fiq

∗ (fi)π
∗ (fi) s

2
i . The condition for Lemma 1

clearly holds, and so the lemma implies (19) holds for ai = fi if and only if P ′ > 1 given ∂Ui/∂fi < 0. This

implies f∗i ≥ fSEi if P ′ > 1 and f∗i ≤ fSEi if P ′ < 1.

Consider ϕ > 0. For instrument ai = PSi , we have

∂Ui
∂PSi

= ϕu∗ (fi)
∂k̄i/∂P

S
i

k̄i
G(k̄i)

∂2Ui
∂si∂PSi

= ϕ
∂

∂si

[
u∗ (fi)

∂k̄i/∂P
S
i

k̄i
G(k̄i)

]
∂2Ri
∂si∂PSi

= ϕ
∂

∂PSi

[(
fiq
∗ (fi) si + PSi

) ∂k̄i/∂si
k̄i

G(k̄i)

]
− ϕfiq∗ (fi)

∂k̄i/∂P
S
i

k̄i
G(k̄i).

If ϕ→ 0, then

− 1

P ′
∂2Ui
∂si∂PSi

− ∂2Ri
∂si∂PSi

− 1

P ′
∂Ui
∂PSi

→ 0,

and so (19) holds in the limit, implying PS∗i →
(
PSi
)SE

. For instrument ai = fi (and again assuming
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PSi = 0), we have

∂2Ui
∂si∂fi

= ϕ
∂

∂fi

[
u∗ (fi)

∂k̄i/∂si
k̄i

G(k̄i)

]
∂2Ri
∂si∂fi

= ϕ
∂

∂fi

[
fiq
∗ (fi)

∂k̄i/∂si
k̄i

G(k̄i)

]
+

1

si

∂Ri
∂fi

.

If ϕ→ 0, the condition for Lemma 2 holds, implying f∗ → fSE .

� Application 2. Consider ϕ = 1, so

Ui = (1− ri) I2
i u
∗π∗si

Ri = ri (1− ri) (Iiπ
∗si)

2 − C (Ii) .

For instrument ai = ri, the condition for Lemma 1 clearly holds, and so the lemma implies (19) holds for

ai = ri if and only if P ′ > 1 given ∂Ui/∂ri < 0. This implies r∗i ≥ rSEi if P ′ > 1 and r∗i ≤ rSEi if P ′ < 1.

Next, consider the choice of ai = −Ii (we proceed in terms of Ii, but note the sign of the result will take

the opposite interpretation of in Proposition 4). Then,

∂2Ui
∂si∂Ii

=
1

si

∂Ui
∂Ii

∂2Ri
∂si∂Ii

=
2

si

(
∂Ri
∂Ii

+ C ′ (Ii)

)
>

2

si

∂Ri
∂Ii

meaning

dA∗i
dIi
|Ii=I∗i = − 1

P ′
∂2Ui
∂si∂Ii

− ∂2Ri
∂si∂Ii

< − 1

P ′
1

si

∂Ui
∂Ii
− 2

si

∂Ri
∂Ii

= 0,

where the last equality uses the FOC definition of the equilibrium instrument I∗i . Given ∂Ui

∂Ii
> 0, we

conclude [
dA∗i
dIi
− 1

P ′
∂Ui
∂Ii

]
Ii=I∗,si=1/m

< 0,

meaning (19) holds for a∗i = Ii if and only if P ′ < 1. That is, I∗i ≥ ISEi if P ′ < 1 and I∗i ≤ ISEi if P ′ > 1.

Consider ϕ > 0. For instrument ai = Ii, we have

∂2Ui
∂si∂Ii

= ϕ
∂

∂Ii

[
Iiu
∗ ∂k̄i/∂si

k̄i
G(k̄i)

]
∂2Ri
∂si∂Ii

= ϕ
∂

∂Ii

[
riIiπ

∗ ∂k̄i/∂si
k̄i

G(k̄i)si

]
+

∂

∂Ii

(
riIiπ

∗G
(
k̄i
))

︸ ︷︷ ︸
>0

.

If ϕ→ 0, then

− 1

P ′
∂2Ui
∂si∂Ii

− ∂2Ri
∂si∂Ii

− 1

P ′
∂Ui
∂Ii
→ − ∂

∂Ii

(
riIiπ

∗G
(
k̄i
))
− 1

P ′
∂Ui
∂Ii

< 0,

meaning (19) holds for this instrument in the limit if and only if P ′ < 1, which is the same condition as the

case with ϕ = 1.
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For instrument ai = ri, we have

∂2Ui
∂si∂ri

= ϕ
∂

∂ri

[
Iiu
∗ ∂k̄i/∂si

k̄i

]
∂2Ri
∂si∂ri

= ϕ
∂

∂ri

[
riIiπ

∗ ∂k̄i/∂si
k̄i

si

]
+

1

si

∂Ri
∂ri

.

If ϕ→ 0, the condition for Lemma 2 holds in the limit, implying r∗ → rSE .

� Application 3. In what follows, we treat the platform first-party entry variable as if it is continuous.

Consider ϕ = 1, so

Ui = (u∗ + αei(liu
sp + (1− li)ud − u∗))k̄i

Ri = (riπ
∗ + αei(liπ

sp + (1− li)
(
riπ

d + πfp
)
− riπ∗))k̄isi,

where k̄i ≡ (1−ri)(π∗−αei(π∗−(1− li)πd))si. For each instrument ai ∈ {ri, ei, li}, the condition for Lemma

1 clearly holds, and so the lemma applies. Moreover, clearly ∂Ui/∂ri < 0 and ∂Ui/∂li < 0. Meanwhile
∂Ui

∂ei
≤ 0 if and only if

(liu
sp + (1− li)ud − u∗))(1− ri)(π∗ − αei(π∗ − (1− li)πd))si

≤ (u∗ + αei(liu
sp + (1− li)ud − u∗))(1− ri)(π∗ − (1− li)πd)si.

If liu
sp+(1− li)ud ≤ u∗, then this is clearly true. So suppose liu

sp+(1− li)ud > u∗. A sufficient condition

for this to hold is that it holds when li = 0, and so this holds for all ei ∈ [0, 1] if

ud − u∗

u∗
≤ π∗ − πd

π∗
, (35)

i.e., ignoring any self-preferencing, the percentage per-buyer gain in utility from entry is weakly lower than

the percentage loss in seller profit. Then (19) holds for ai ∈ {ri, li} if and only if P ′ > 1, and provided (35)

also holds, likewise for ai = ei. Thus, with this extra condition, each of ai ∈ {ri, ei, li} satisfies a∗i ≥ aSEi if

P ′ > 1 and a∗i ≤ aSEi if P ′ < 1.

Consider ϕ > 0. For each instrument ai ∈ {ri, ei, li}, we have

∂2Ui
∂si∂ai

= ϕ
∂

∂ai

[
(u∗ + αei(liu

sp + (1− li)ud − u∗))
∂k̄i/∂si
k̄i

G(k̄i)

]
∂2Ri
∂si∂ai

= ϕ
∂

∂ai

[
(riπ

∗ + αei(liπ
sp + (1− li)

(
riπ

d + πfp
)
− riπ∗))

∂k̄i/∂si
k̄i

G(k̄i)si

]
+

1

si

∂Ri
∂ai

.

If ϕ→ 0, the condition for Lemma 2 holds in the limit, implying r∗ → rSE , e∗ → eSE , and l∗ → lSE .

� Application 4. Consider ϕ = 1, so

Ui = (β (1− λiri) + (1− β) (1− ri))u∗π∗si
Ri = ri (βλi (1− λiri) + (1− β) (1− ri)) (π∗si)

2
.

For each instrument ai ∈ {ri, λi}, the condition for Lemma 1 clearly holds, and so the lemma applies. Given

∂Ui/∂ri < 0 and ∂Ui/∂λi < 0, (19) holds for ai ∈ {ri, λi} if and only if P ′ > 1, thus implying a∗i ≥ aSEi if

P ′ > 1 and a∗i ≤ aSEi if P ′ < 1.
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Consider ϕ > 0. For each instrument ai ∈ {ri, λi}, we have

∂2Ui
∂si∂ai

= ϕ
∂

∂ai

[
βu∗

∂k̄i/∂si
k̄i

G(k̄i) + (1− β)u∗
∂k̄ni /∂si

k̄i
G(k̄ni )

]
∂2Ri
∂si∂ai

= ϕ
∂

∂ai

[
βriλiπ

∗ ∂k̄i/∂si
k̄i

G(k̄i)si + (1− β)π∗
∂k̄ni /∂si

k̄i
G(k̄ni )si

]
+

1

si

∂Ri
∂ai

.

If ϕ→ 0, the condition for Lemma 2 holds in the limit, implying r∗ → rSE and λ∗ → λSE .

� Application 5. Consider ϕ = 1,

Ui =

(∫ ∞
0

u(q(min(p∗i , z))−min(p∗i , z)q(min(p∗i , z))dH(z)

)
k̄i

Ri = rip
∗
i q(p

∗
i )(1−H(p∗i ))k̄isi

where

k̄i =

(
(1− ri) p∗i q(p∗i )(1−H(p∗i )) + πa (1− τi)

∫ p∗i

0

q(z)dH(z)

)
si.

For each instrument ai ∈ {ri, τi}, the condition for Lemma 1 clearly holds, and so the lemma applies. Then,

∂Ui/∂ri < 0 is obvious because

p∗i =
1− τi
1− ri

+
1−H(p∗i )

h(p∗i )
+ p∗i

q′(p∗i )

q(p∗i )

1−H(p∗i )

h(p∗i )

is increasing in ri while k̄i is decreasing in ri. Therefore, (19) holds for ai = ri if and only if P ′ > 1, implying

r∗i ≥ rSEi if P ′ > 1 and r∗i ≤ rSEi if P ′ < 1. Meanwhile, the sign of ∂Ui/∂τi is not obvious because both p∗i
and ki are decreasing in τi. That is, a more stringent tracking policies increases per-seller surplus of buyers

but reduces seller participation.

Consider ϕ > 0. For each instrument ai ∈ {ri, τi}, we have

∂2Ui
∂si∂ai

= ϕ
∂

∂ai

[(∫ ∞
0

u(q(min(p∗i , z))−min(p∗i , z)q(min(p∗i , z))dH(z)

)
∂k̄i/∂si
k̄i

G(k̄i)

]
∂2Ri
∂si∂ai

= ϕ
∂

∂ai

[
rip
∗
i q(p

∗
i )(1−H(p∗i ))

∂k̄i/∂si
k̄i

G(k̄i)si

]
+

1

si

∂Ri
∂ai

If ϕ→ 0, the condition for Lemma 2 holds in the limit, implying r∗ → rSE and τ∗ → τSE .

F Total user surplus

We want to compare a∗ with the level of a that maximizes total user surplus (TUS) for each of our applica-

tions, where platforms remain free to set their profit-maximizing buyer-side price PBi . For these applications,

the conditions of Proposition 2 apply, as detailed in Sections 2.2 and 3.3. Similar to Section 5.1, we focus on

the case where platform instrument ai is a scalar. Focusing on the choice of any particular scalar instrument

we have that a∗ ≡ aSE ≥ aW . Note that in the symmetric outcome

ŴTUS(ai) = Ui((ai, ..., ai); 1/m)− PB∗︸ ︷︷ ︸
buyer surplus

+ SS((ai, ..., ai)︸ ︷︷ ︸
seller surplus

. (36)

We want to show the conditions under which

dŴTUS (ai)

dai
|ai=a∗ ≤ 0, (37)
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which implies a∗ ≥ aTUS provided ŴTUS is single-peaked.

Recall we have defined ai in a way such that SS((ai, ..., ai)) is weakly decreasing in ai, so from (36) it

remains to show that buyer surplus is also weakly decreasing in a. For this, we can make use of the analysis

in Section 5.1 since PBi is the same as Ai when P ′ = 1. We divide the results into three sets of cases that

we can sign:

1. Suppose we assume G is linear (i.e. ϕ = 1 in (34)) and the conditions in Lemma 1 hold (in Section E).

From the analysis in Section 5.1, we know dPBi /dai = 0 when evaluated at the symmetric equilibrium

outcome. Thus, buyer surplus is weakly decreasing in a at the symmetric equilibrium outcome iff
∂Ui

∂ai
≤ 0 at that outcome. Using the analysis in Section 5.1, we have the conditions in Lemma 1 hold

and ∂Ui

∂ai
≤ 0 at the symmetric equilibrium outcome, and thus a∗ ≥ aTUS for each of the following

cases:

(a) Application 1 with ai = fi and assuming PSi = 0.

(b) Application 2 with ai = ri.

(c) Application 3 for each instrument ai ∈ {ri, li} and likewise for ai = ei provided (35) also holds.

(d) Application 4 for each instrument ai ∈ {ri, λi}.

(e) Application 5 with ai = ri.

2. Suppose we assume sufficiently inelastic seller participation (i.e. ϕ→ 0 in (34)) and the conditions in

Lemma 2 (in Section E) hold, so

∂2Ui
∂si∂ai

→ 0 and
∂2Ri
∂si∂ai

→ 1

si

∂Ri
∂ai

for any ai. Then from Lemma 2, we get that

dPBi
dai

→ − 1

si

∂Ri
∂ai

. (38)

Now Ŵ = ŴTUS + Π, where Π is the platforms’ joint profit in the symmetric outcome with every

platform setting instrument ai. Ignoring constant terms, this equals

Π = PB∗ +mRi.

Evaluated at the symmetric equilibrium outcome, this implies

dΠ (ai)

dai
=
∂PBi
∂ai

+m
∂Ri
∂ai
→ 0

given (38). This means dŴTUS

dai
→ dŴ

dai
. Assuming the objective functions are singled peaked over the

relevant range, from the analysis in Section 5.1 it follows that aTUS → aW ≤ a∗ in the following cases:

(a) Application 1 with ai = fi and assuming PSi = 0.

(b) Application 2 with ai = ri.

(c) Application 3 for each instrument ai ∈ {ri, li, ei}.

(d) Application 4 for each instrument ai ∈ {ri, λi}.

(e) Application 5 for each instrument ai ∈ {ri, τi}.
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3. Consider Application 2 with ai = −Ii and linear G (i.e. ϕ = 1). For this case, we need to calculate

things directly. Specifically, we have

ŴTUS(ai) =
(
Iiu
∗G
(
k̄i
)
− PBi

)︸ ︷︷ ︸
buyer surplus

+ ((1− ri) Iiπ∗)G
(
k̄i
)
−m

∫ k̄i

0

kdG (k)︸ ︷︷ ︸
seller surplus

=
m (1− ri) I2

i π
∗ (π∗ + 6u∗ + 3π∗ri)

4kmax
,

where we have used that

PBi = c+
1

mΦ′ (0)
− (1− ri) I2

i π
∗ (u∗ + riπ

∗)

kmax

from (25) with Ai = PBi and P ′ = 1. Clearly, TUS is maximized for infinitely high Ii, so that

ITUS > I∗, while for completeness we note in this case: rTUS = 1
3 −

u∗

π∗ ≤
1
2 −

u∗

2π∗ = r∗. That ŴTUS

is strictly increasing in Ii reflects that investment directly increase buyer-side utility and seller-side

profit but users do not incur the associated fixed costs of the platforms’ investments.

G Effect of number of platforms on commissions

Consider Application 2. We wish to explore how r∗i − rWi changes with the number of platforms m, both in

the case without spillovers, and when we add within-seller economies of scale spillovers as in Section 4.1.

G.1 Case without spillovers

Recall from Application 2 we have k̄i ≡ (1− ri) Iiπ∗si,

Ui = Iiu
∗G
(
k̄i
)

Ri = riIiπ
∗siG

(
k̄i
)
− C (Ii)

and the total welfare at the symmetric point is:

Ŵ = −c+ Ii(u
∗ + π∗)G

(
k̄i
)
−m

∫ k̄i

kmin

kdG (k)−mC(Ii).

The first thing to note is that

∂Ŵ

∂ri
= −(u∗ + riπ

∗)
1

m
I2
i π
∗g
(
k̄i
)
< 0

so that given the constraint that ri ≥ 0, we always get rWi = 0.

We compare this to r∗i which solves the SE maximization problem: maxri
{

1
mUi +Ri

}
. The correspond-

ing first-order condition can be written as

(u∗ + riπ
∗)

1

m
Ii = Ω

(
k̄i
)
,

where we define the reciprocal of the reverse hazard rate of G as

Ω (x) =
G (x)

g (x)
.
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Assuming r∗i > 0,5 so r∗i is determined by the first-order condition rather than the non-negativity constraint

ri ≥ 0, we can totally differentiate the first-order condition, and after substituting back in the first-order

condition, we get

dr∗i
dsi

=
(1− r∗i )π∗ − Ω(k̄i)

siIiΩ′(k̄i)

π∗

m

(
1 + 1

Ω′(k̄i)

) ,

where weak log-concavity of G ensures Ω′ ≥ 0.

Suppose Ω takes the form Ω (x) = υxω with υ > 0 and constant elasticity ω > 0. The derivative above

then becomes
dr∗i
dsi

=
(1− r∗i ) (ω − 1)

ω
m

(
1 + 1

Ω′(k̄i)

) ,
where Ω′

(
k̄i
)
> 0. Here ω = 1 corresponds to constant-elasticity G (which includes linear G), while ω < 1

corresponds to the elasticity of G being increasing in its argument and ω > 1 corresponds to the elasticity

of G being decreasing in its argument. Thus, provided we restrict to Ω taking this functional form with

ω > 0, if the elasticity of G is constant, then
dr∗i
dsi

= 0 and r∗i does not depend on m; if the elasticity of G is

increasing, then
dr∗i
dsi

< 0 and r∗i is increasing in m; and if the elasticity of G is decreasing, then
dr∗i
dsi

> 0 and

r∗i is decreasing in m. Given rWi = 0 is fixed, this shows the divergence r∗i − rWi depends on the shape of G

(specifically, whether its elasticity is constant, increasing or decreasing), and the divergence can increase or

decrease in m in general.

G.2 Case with spillovers

Next consider what happens when we add spillovers to the above application using the framework of within-

seller economies of scale from Section 4.1. Recall, a type-k seller joins all platforms if

k ≤
m∑
i=1

(1− ri) Iisiπ∗ ≡ k̄,

and otherwise does not join any platform. The functions Ui and Ri are otherwise the same, but note in

total welfare across all m platforms, the sellers’ participation costs are only incurred once.

If the planner chooses a common r, it does so to maximize

Ŵ = −c+ Ii(u
∗ + π∗)G

(
k̄
)
−m

∫ k̄

kmin

kdG (k)−mC(Ii),

so

∂Ŵ

∂ri
= −(u∗ + rπ∗)π∗

(
m∑
i=1

siIi

)2

g
(
k̄
)
< 0,

and as a result rW = 0.

We compare this to r∗i which solves the SE maximization problem: maxri
{

1
mUi +Ri

}
. This involves

the same first-order condition as without spillovers, and the same resulting derivative except that Ω is now

a function of k̄ rather than ki. Given Ω (x) = υxω and provided the equilibrium r∗ > 0, this implies (after

5For example, if G has the constant elasticity form G (x) = xϕ then regardless of m, we get r∗i = max
{

1
2
− u∗

2π∗ , 0
}

,

so u∗ < π∗ ensures r∗i > 0.
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imposing symmetry on the solution)
dr∗i
dsi

=
(1− r∗) (ω −m)

ωsi

(
1 + 1

Ω′(k̄i)

) .
Provided m > ω, we have that

dr∗i
dsi

< 0 and r∗i is increasing in m, implying the divergence r∗− rW increases

in the number of platforms. For instance, with constant-elasticity G, since ω = 1, this is always true for

any number of platforms m ≥ 2. Indeed, we can solve for the equilibrium commission rate explicitly in this

case, which equals

r∗ = max

{
m

m+ 1
− u∗

(m+ 1)π∗
, 0

}
,

which is an increasing function of m provided mπ∗ ≥ u∗.
Intuitively, with spillovers, the more platforms there are, the less effect an individual platform’s increase

in commission has on decreasing seller participation given that depends on the weighted average commis-

sion across all platforms. This results in each platform preferring a higher commission level, resulting in

commissions being even more inflated above the efficient level.

22


	Introduction
	Related literature

	Model setup
	Discussion of modelling features
	Examples of applications

	Equilibrium and seller-excluded outcomes
	The equivalence result and no spillovers
	Welfare implications
	Applications continued

	Cross-platform spillovers
	Sources of spillovers
	Mixed homing configurations

	Other sources of non-equivalence
	Monetizing via other buyer-side instruments
	Myopic buyers

	Policy discussion
	Conclusion
	Appendix
	Proofs in Section 2
	Proofs in Section 4
	Proofs in Section 5

	Asymmetric platforms and incomplete coverage on buyer side
	Demand-side heterogeneity and competing sellers
	Details for Sections 2.2 and 3.3
	Details for Section 4.1
	Within-seller economies of scale
	Price coherence
	Building a direct channel

	Details for Section 5.1
	Total user surplus
	Effect of number of platforms on commissions
	Case without spillovers
	Case with spillovers


