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Abstract

Artificial intelligence (AI) increasingly shapes economic decisions through recommender sys-

tems, which personalize recommendations from user data. Yet, how the value from personal-

ization scales with data remains unclear. We introduce a probability-based model designed to

flexibly accommodate varying degrees of recommendation personalization. Using this model,

we derive the value of recommender systems at different personalization levels, and decompose

the value into customization, selection, and screening components. We also find a condition

under which increased customization strictly benefits users. Our analysis reveals that deeper

customization can yield non-diminishing returns and super-additivity. Empirical analyses using

Bayesian predictions support our theoretical insights.
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1 Introduction

Artificial intelligence (AI) increasingly shapes economic decision making, with recommender sys-

tems emerging as a key example of how AI adds value to users. These AI-driven tools convert high

dimensional user-item interaction data into personalized recommendations for products, media con-

tent, and services. Rather than peripheral features, recommender systems represent core engines

of value creation for major platforms such as YouTube, TikTok, Instagram, Netflix, Spotify, and

Amazon, directly influencing user choices and platform revenues. Despite their widespread adop-

tion and economic significance, our understanding of how value is generated from and scales with

the volume of data and customization remains limited, especially in settings with both within-user

and across-user learning from large-scale data.

This paper addresses these gaps by proposing an economic model that captures how increases

in data scale and algorithmic capacity translate into deeper customization, and how this person-

alization in turn generates value for users. The evolution of recommender systems illustrates a

clear trajectory toward this goal. Early systems, limited by data processing capabilities, relied on

simple metrics like popularity or aggregate ratings, which offered limited personalization. Over the

last few decades, we have witnessed a steady, and at times radical, progression in recommender

system technology. The move from näıve, popularity-based systems to more sophisticated methods

like collaborative filtering marked a significant leap in personalization. More recently, the advances

in generative AI models represent another step in this evolution, enabling even deeper levels of

customization.1 This expanded capability allows recommender systems to integrate diverse user

behaviors and contextual features, creating significant value for users. For instance, music plat-

forms can help a user discover novel songs matching their niche tastes, while online marketplaces

can identify complementary products to complete a purchasing goal.2

In our stylized model, a platform aggregates historical user feedback to generate personalized

probability estimates. While our framework can incorporate any observable user data, we focus

specifically on user ratings for simplicity, as the model generalizes to other data forms through

straightforward relabeling. The platform uses historical data to identify correlations across items

and predicts the likelihood that a new user will like each item conditional on their past ratings

on other items. Our recommendation framework closely mirrors the practical stages of modern

1For an extensive review comparing these paradigms of recommender systems, see Ayemowa et al. (2024) and Wu
et al. (2024).

2For detailed insights, see Subbiah and Aggarwal (2024).
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systems: item retrieval, ranking based on predicted probabilities, and threshold-based filtering.

Recommended items yield positive payoffs if tried and liked, negative payoffs if disliked, and zero

otherwise.

Our study provides three main contributions. First, we introduce a tractable model that explic-

itly accommodates different degrees of customizations. This flexible model allows for both theoret-

ical analysis and empirical implications. Within this framework, we quantify the economic value

created by personalization in recommendations, decomposing it into three distinct components:

customization, selection and screening. Customization segments users based on their historical

data; selection identifies the best item(s) to recommend from a pool of candidate items; screening

determines if the selected item(s) are good enough to be recommended, filtering out suggestions

that fall below a threshold level. We show that the user-optimal threshold that perfectly aligns

with user’s interest by recommending items only if the user’s expected payoff is positive, ensures

additional customization always weakly increases user welfare. Conversely, we show that only the

user-optimal threshold provides this guarantee. For any misaligned threshold, we demonstrate that

there always exist patterns in how items are correlated for which deeper customization strictly

harms certain user segments. We then derive a necessary and sufficient condition under which

deeper customization always strictly increases user welfare.

Second, we characterize the learning curve as data grows along two distinct dimensions: breadth

and depth. Typically, analyses of increased data focus primarily on breadth–expanding the number

of users from whom data is collected. However, in AI-driven recommender systems, the depth of

data–detailed individual user information–is equally critical for precision. We investigate how user

welfare evolves as customization deepens. Unlike the breadth dimension, which consistently yields

positive but diminishing returns, increasing data depth can produce non-diminishing and even

increasing marginal returns. Moreover, the depth dimension can display super-additivity, where

the value of recommendations conditioned on multiple items surpasses the sum of values derived

from conditioning on each item individually. We formalize the conditions under which this synergy

occurs. These two dimensions jointly create a learning curve composed of cascading, overlapping

diminishing return curves. Increasing the breadth of data raises user welfare at a diminishing rate,

but simultaneously enables deeper customization, which initiates a new, higher potential welfare

curve. Consequently, as data expands along both dimensions, user welfare progresses upward

through a series of these curves.

Our third contribution empirically validates these theoretical insights using a Bayesian proba-
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bility estimation model applied to a dataset of over four million anonymous joke ratings from 73,421

users. Counterfactual analyses demonstrate substantial welfare improvements: a rating system that

does not offer customization increases user welfare by 30.4% over one with no rating system, and

customizing recommendations yields an additional 33.7% increase. After demonstrating that both

the marginal value of additional users and deeper customization exhibit diminishing returns in our

data, we assess the extent of complementarity or substitutability between these two dimensions of

learning. We find the number of previous users exhibits strong complementarity with the degree

of customization when both the number of users and the degree of customization is low, but this

complementarity disappears quickly as the system accumulates data from more users.

The remainder of the article proceeds as follows. Section 2 surveys the related literature. Sec-

tion 3 formally defines the recommender system, develops the theoretical framework for analyzing

its economic value, explores its theoretical implications, and presents key empirical results that il-

lustrate our findings. Section 4 concludes. All proofs appear in the Appendix, with supplementary

analyses relegated to the Online Appendix.

2 Related Literature

Our work contributes to a rapidly growing economic literature on artificial intelligence and rec-

ommender systems. It is arguably closest to Calvano et al. (2025), who study how collaborative

filtering based recommendations on a platform affect various outcomes including the match be-

tween products and consumers, and the additional value generated for consumers. A key difference

is that they incorporate how a platform’s recommendations can alter consumer search, and as a

result, how competing firms price their products. This means market outcomes such as market

concentration and prices, which are their main focus, are endogenous in their setting. We ab-

stract from endogenous market outcomes and focus just on the matching aspect of a recommender

system. Methodologically, whereas Calvano et al. (2025) adopts a parametric taste-feature rep-

resentation, we develop a non-parametric, probability-based model that works directly with the

correlation structure between items and user histories. This lets us study theoretically how value

scales with data depth as well as breadth, and it delivers conditions for non-diminishing returns

and super-additivity from deeper customization.

By decomposing the roles of across-user and within-user learning, our work relates to Hagiu

and Wright (2023) who introduce these concepts (and terminology) albeit in a quite different
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environment — they study how competitive advantage evolves in the face of each type of learning.

Our focus is on a setting where both types of learning co-exist, something Hagiu and Wright (2023)

only briefly consider.

More broadly, our research connects to a considerable body of work examining how user data

and firms’ algorithms influence market outcomes. Calvano et al. (2020) show in controlled simu-

lations that Q-learning pricing agents can sustain supracompetitive prices via collusive strategies.

Experiments on algorithmic pricing show that the design of learning protocol matters for market

performance. Asker et al. (2023) demonstrate that different AI learning rules can lead to sharply

different market prices. In contrast to these pricing-centric studies, our paper abstracts from prices

and competition to isolate the intrinsic welfare value generated by deeper customization from user

data. Beyond pricing, papers on learning consumer preferences and rankings study how algorithms

infer heterogeneity from feedback signals. e.g., Chen et al. (2018) and Feng et al. (2022). On the

other hand, contributions by Biglaiser et al. (2019), de Cornière and Taylor (2024), Fainmesser et al.

(2022), and Aridor and Gonçalves (2022) consider equilibrium outcomes when firms use consumer

data to enhance their offerings, with Aridor and Gonçalves (2022) explicitly addressing welfare

impacts arising from platforms steering consumers toward proprietary products.

Finally, several recent empirical contributions explore the role and economic significance of

recommender systems. Aridor et al. (2024) conduct a field experiment on a movie-recommendation

platform, demonstrating that recommendations directly affect user beliefs about product quality

and drive subsequent information acquisition. Relatedly, studies by Bajari et al. (2019), Peukert

et al. (2023), and Yoganarasimhan (2020) quantify economic returns to data primarily through

improvements in forecast accuracy. Particularly relevant to the distinction between data breadth

and depth, Schäfer and Sapi (2023) investigates the impact of data size on search quality and finds

that both across-user and within-user learning significantly enhance search outcomes. Our paper

complements these empirical studies by proposing a microfounded model that provides a theoretical

basis for their findings. Specifically, our framework shows how learning from user data translates

into tangible user surplus, offering a mechanism that links the improvements in predictive accuracy

documented in the empirical literature to welfare gains.
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3 Value of data

3.1 The model

A platform has I ≥ 1 items to consider recommending to a target user and chooses an item to

recommend to the user who can have either a positive or a negative experience with the item.

Each of the I items is called a target item and we denote the set of target items by I. The user

has tried C ≥ 0 items before and we call them conditioning items as the platform can customize

its recommendation based on the user’s reported experiences with the C items. Although our

analysis focuses on the scenario where conditioning items are past experiences, they can more

generally represent any observable user features, such as demographics, geographic location, or

browsing history. Thus, our model closely mirrors modern recommender systems that leverage

diverse historical and contextual data for highly personalized recommendations.

In our framework, a user obtains a payoff of v1 > 0 from a positive experience and v0 ≤ 0 from

a negative experience with a target item. Similarly, the platform obtains w1 and w0 corresponding

to the user’s positive or negative experiences. If the user does not try the item, both parties receive

a payoff of zero. The probability of either experience with a target item is initially unknown to the

platform or to the target user. Therefore, the platform aims to estimate these probabilities based

on accumulated user data before making a recommendation.

Data

The platform’s data is represented by an M ×N matrix, X, containing ratings from N ≥ 1 users

for M items. The first C rows represent ratings on conditioning items, and the remaining I rows

correspond to target items. Thus, the set of conditioning items is {1, · · · , C} and that of target

items is I = {C + 1, · · · ,M}. Assume each item i ∈ {1, 2, · · · , C, C + 1, · · · ,M} has a finite

number of possible ratings. For analytical convenience, we assume that the ratings for target items

are binary (positive or negative). Some users may not have ratings on some of the M items. If a

user has a missing rating of item i, we denote this by ∅. Thus, in the data X, a typical element

xij ∈ {∅, 0, 1} records user j’s rating of item i. Without loss of generality, we reserve the first

column of X to denote the target user’s ratings. Naturally, we have xi1 = ∅, ∀i ∈ I given the

target user’s ratings of target items must be predicted.

Data X is said to be complete if we have xij ̸= ∅, ∀i,∀j s.t. i ≤ C or j ̸= 1. In other words,

the platform has complete data if the only missing ratings are the target user’s rating of the target
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items. On the other hand, if the condition for complete data is not satisfied, the data is said to be

partial. To reduce the notational burden, we focus here on the case in which the existing user data

is complete, and we explain the extension to partial data in the Online Appendix C and D.3

Statistical model

The platform estimates the likelihood of a target user having a positive user experience with

each target item based on historical data. Formally, we define outcomes for each combination of

conditioning items and a target item. An outcome is a vector of length C+1 that records the user’s

ratings on C conditioning items and on a specific target item, i. The set of all possible outcomes

corresponding to target item i is denoted by Ri.

Although the interpretation of an outcome vector depends on the target item i, the set of

possible vectors is structurally identical across all target items. For notational simplicity, we can

therefore refer to this common set of outcomes as simply R, letting the relevant target item be

clear from the context. For example, consider a platform that conditions on the reported (binary)

rating of item 1 in making predictions about item 2 and item 3, i.e., C = 1 and I = 2. The main

example we use throughout the article is represented in Table 1. The set of outcomes R in this

case is given by R = {(1, 1), (1, 0), (0, 1), (0, 0)}.

user 1 user 2 user 3 user 4 user 5

Rating on item 1 1 1 0 1 1

Rating on item 2 ∅ 1 0 1 0

Rating on item 3 ∅ 0 1 1 0

Table 1: Main example

The target user’s ratings on the C conditioning items can be represented by r′, which is a

subvector of r ∈ R whose length is C. We refer to r′ as a history. The set of all such histories

of length C is denoted by R′. When C = 0, we take R′ = {∅}. By slightly abusing notation, we

denote the vector of dimension C+1 created by adding 1 to the end of r′ by (r′, 1). Similarly, (r′, 0)

denotes the vector created by appending 0 to the end of r′. Any r ∈ R one-to-one corresponds to

either (r′, 1) or (r′, 0) for some r′. For example, r = (1, 0) is equivalent to (r′, 0) for r′ = (1).

For each target item i, the outcome is governed by an unobserved probability vector pi =

3We focus on the complete data case as it serves as a clear theoretical benchmark, allowing us to derive a closed-
form solution for the value of data. The framework extends to partial data, although the analysis becomes more
complex as it requires integrating over the distributions of missing ratings. The extensions in the Online Appendix
detail how our recommender system makes predictions in this more complex setting and provides the corresponding
welfare analysis.
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(pir)r∈R, where pir denotes the joint probability of a specific outcome r, representing the vector

of ratings across the C conditioning items and target item i. We assume pir > 0, for all i and

r. This probability vector pi is referred to as a correlation structure as it reveals how the user

experience with the target item i and conditioning items are correlated each other. Naturally,

these probabilities satisfy
∑

r∈R pir = 1. Additionally, the true probability associated with a given

user history r′ is denoted by pir′ , which equals the sum of probabilities for the corresponding positive

and negative outcomes: pir′ = pi(r′,1) + pi(r′,0).

Recommender system

Given the correlation structure, the platform estimates the probability zi(r
′) that the target user

will have a positive experience with target item i, conditional on their history r′.

zi(r
′) =

pi(r′,1)

pir′
. (1)

The fact that the same probability zi(r
′) applies to all the users with the same history r′

does not imply that these users have identical preferences. Instead, the platform treats these

users equivalently due to the limitations imposed by the degree of customization it uses. As

richer and more detailed user data become available, enabling a higher degree of customization,

the platform can better differentiate between users and provide increasingly precise, personalized

recommendations.

Let ẑNi (r′) be a pointwise estimator of zi(r
′) for a target user whose history is r′, based on data

from N − 1 previous users. Additionally, the platform sets a threshold τ(r′) ∈ [0, 1] that applies

to users with history r′. If the estimated probability ẑNi (r′) is below this threshold, the item i is

deemed not suitable for the user with history r′, and therefore, the system does not recommend

this item to the user. Formally, we define a recommender system as follows:

Definition 1 A recommender system is a collection of functions

{{
ẑNi

(
r′
)}

i∈I , τ
(
r′
)}

r′∈R′
.

Given data X and the target user’s history r′, target item i is recommended to the target user if

and only if ẑNi (r′)(X) ≥ maxj∈I{ẑNj (r′)(X), τ(r′)}.

Note that the value derived from data is inherently linked to the specific recommender system
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employed. Different estimators within recommender systems can lead to varied inferences, user de-

cisions, and subsequent learnings from identical data. Consequently, no single recommender system

can capture the universal value that data might offer. Nevertheless, as the number of previous users

N becomes very large, we can evaluate the value offered by a broad class of recommender systems

termed consistent recommender systems. A recommender system is said to be consistent if, for each

r′, the estimator ẑNi (r′) is statistically consistent for zi(r
′). Formally, a consistent recommender

system can be defined as follows.

Definition 2 A recommender system is said to be consistent if ẑNi (r′) converges in probability to

zi(r
′) ∈ [0, 1] for each r′ ∈ R′.

The existence of consistent recommender systems is guaranteed.4 Although consistency is an

asymptotic property, it represents a fundamental requirement for reliable recommendation perfor-

mance, as violating it would imply persistent prediction errors. In the following sections, we focus

exclusively on consistent recommender systems, examining both the asymptotic value that such

systems create for users and the incremental benefit arising from deeper customization. While user

value from any consistent recommender system approaches its asymptotic limit with more data,

finite-sample values are dependent on the specific system chosen. We detail the finite-sample im-

plications for user value in Section 3.5, where we impose an additional unbiasedness condition on

the estimator.

User behavior

We model the target user’s decision with a cutoff rule. Suppose, hypothetically, the correlation

structure is fully known to the platform. Because the user receives v1 > 0 from a positive experience

and v0 ≤ 0 from a negative experience, the user-optimal threshold is τu = −v0
v1−v0

. It is therefore

optimal for the target user if platform recommends the item with the highest probability of liking

only when that probability exceeds τu.

On the other hand, the platform receives w1 and w0 from the user’s positive and negative

experiences (with w1 > w0), which yields the platform-optimal threshold τp = max{0, −w0/(w1 −

w0)}.

Prior to any recommendation, for a target user with history r′, let the user’s belief about zj(r
′)

for each target item j be represented by some distribution Gj . Upon receiving a recommendation

4We explicitly construct a Bayesian recommender system satisfying this consistency criterion in Online Appendix
A.
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of item i, the user updates to the implied posterior.5 Using this posterior, define τ as the obedience

lower bound: if the platform sets its per-history threshold below τ , a user declines to try the item

even when it is recommended. For example, consider the simplest case with a single target item,

namely item i, where zi(r
′) is uniformly distributed over [0, 1]. With (v1, v0) = (1,−2), if the

platform sets τ = 1/4, then posterior mean success probability conditional on a recommendation is

(τ +1)/2 = 5/8, so the user’s expected utility from trying is −1/8 < 0. Equivalently, the obedience

lower bound here is τ = 1/3. Thus, when τ < τ , the user does not follow the recommendation.

We discard the trivial case τp < τ , in which users do not follow recommendations and the

value of the system is trivially zero. In the relevant case that we will focus on, τp ≥ τ , and users

optimally follow recommendations in the asymptotic regime.6

3.2 Value of data and its decomposition

We characterize and decompose the value created by personalized recommender systems. To isolate

the gains from personalization, we contrast these systems with a simpler, non-personalized bench-

mark, which we refer to a generic recommender system. This system relies solely on aggregate

user data without personalizing recommendations based on individual user histories. Formally, the

generic recommender system selects recommendations based on an estimated probability, ẑGi of

the true probability zGi =
∑

r′∈R′ pi(r′,1), that an average user will positively experience an item,

independent of any specific history.

Definition 3 A generic recommender system is a recommender system {{ẑGi }i∈I , τG} such that

ẑGi is a consistent estimator for zGi .

The generic system corresponds to early popularity or average-based rules that rely solely

on across-user data and serve as a transparent benchmark for isolating the incremental value of

conditioning. In contrast, the type of personalized recommender system we study represents a

recommendation framework that leverages both across-user and within-user learning, providing a

higher degree of customization. We analyze the ex-ante value created by these more sophisticated

personalized systems, averaging their expected benefits across all possible data realizations weighted

by true probabilities.

5E.g., if {zj(r′)}j∈I is i.i.d., the recommended item would be the largest order statistic among those above the
platform’s threshold.

6If instead we assume user behavior such that users always follow the platform’s recommendation regardless of
τp, then we can drop the obedience lower bound condition we impose, that τp ≥ τ .
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Proposition 1 quantifies this value, separating it into two distinct components: (1) generic

across-user learning and (2) additional gains from personalized recommendations. All the proofs

are given in the Appendix.

Proposition 1 1. For the user-optimal threshold, in any consistent recommender system, as

N → ∞, the expected utility to a user converges to

∑
r′∈R′

max
i∈I

{
v1p

i
(r′,1) + v0p

i
(r′,0), 0

}
.

2. For the user-optimal threshold, the expected utility created from a generic recommendation in

the limit as N → ∞ is

max
i∈I

{ ∑
r′∈R′

(
v1p

i
(r′,1) + v0p

i
(r′,0)

)
, 0

}
.

Customization can be regarded as a finer segmentation of users according to observable features.

To see why a finer segmentation necessarily leads to a higher user welfare under the user-optimal

threshold level, consider a history r′ group of users whose average probability of liking a (unique)

target item is given by z. Under the user-optimal threshold, the average utility of the history r′

users is max{v1z + v0(1 − z), 0}. If a further segmentation of r′ users into subgroups r′a and r′b

is available to the system, the system makes two separate recommendations according to the two

new average probabilities, za and zb, of the two subgroups. Let pa portion of r′ users is assigned

to r′a subgroup. The expected utility of users under segmentation is then pamax{v1za + v0(1 −

za), 0}+ (1− pa)max{v1zb + v0(1− zb), 0}, where z = paza + (1− pa)zb. The customization reveals

the subgroup that is on-average better off trying (or not trying) the item, which in turn increases

the overall expected utility. In Figure 1, the expected utility without customization is zero while

with customization it is (1− pa)(v1zb + v0(1− zb)).

Figure 1: Customization under the user-optimal threshold
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The difference between the two expressions in the proposition is due to the different degree of

customization each recommender system offers. A consistent recommender system makes history-

dependent recommendations by selecting the best item for each group of history r′ users. Instead,

a generic recommender system only selects the item on average best for every user. Therefore,

the value from generic recommendations in Proposition 1 can be attributed to pure across-user

learning. On the other hand, the difference between the value from consistent recommendations

and the value from generic recommendations can be attributed to the customization benefits that

the consistent recommendation provides. Note that, under the user-optimal threshold, the expected

utility of the target user created from a consistent recommender system is always positive, and it

is at least as great as the expected utility generated from the generic recommendation, which is

also always positive. That is, both the pure across-user learning and the customization component

always add value to users when the recommender system is user-centric.

Note that, although the two systems differ in their degrees of customizations, they share the

same value creation process: a recommender system selects the most suitable item and at the same

time, screens items not suitable for the user. Obviously, the more items in the target item pool,

the more value is created from both of the systems. On the other hand, the benefit from screening

is maximized when the threshold is properly chosen for the user.

Example

To illustrate and better understand how a recommender system adds value through learning and

customization, consider our main example in Table 1 and assume (v1, v0) = (1,−1). In the example,

the platform makes a recommendation between item 2 and item 3, or none based on the target

user’s rating on item 1. According to Proposition 1, when the threshold level is τu, the expected

utility of a user under a consistent mechanism in the limit as N → ∞ is given by

max
{
p2(1,1) − p2(1,0), p3(1,1) − p3(1,0), 0

}
︸ ︷︷ ︸

Recommendation for history 1 user

+max
{
p2(0,1) − p2(0,0), p3(0,1) − p3(0,0), 0

}
︸ ︷︷ ︸

Recommendation for history 0 user

. (2)

Depending on the user’s history, different items can be recommended. For example, if p2(1,1)−p2(1,0) >

max{p3(1,1) − p3(1,0), 0} and 0 > max{p2(0,1) − p2(0,0), p
3
(0,1) − p3(0,0)}, item 2 is recommended to users

who had a positive experience with item 1 but no item is recommended to users with a negative

experience with item 1. On the other hand, under a generic recommender system, which only makes
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use of across-user learning, users receive the same recommendation regardless of their history. The

value from a generic recommendation with the same threshold being applied is given by

max
{
p2(1,1) + p2(0,1) − p2(1,0) − p2(0,0), p3(1,1) + p3(0,1) − p3(1,0) − p3(0,0), 0

}
︸ ︷︷ ︸

No customization in recommendations

. (3)

It is clear that the value from customization is always weakly positive. On the other hand, it is

strictly positive if and only if users who had different experiences with item 1 receive different

recommendations.

Asymptotic lower bound of prediction error

Our ex-ante analytical framework and explicitly introduced theoretical model of correlation struc-

ture enable us to derive a concise closed-form representation of the achievable asymptotic lower

bound on prediction error for consistent recommender systems. It can also be shown that this lower

bound of the error is weakly decreasing in the degree of customization. For a consistent recom-

mender system {{ẑNi (r′)}i∈I , τ(r′)}r′∈R′ , let ϵmi be the number of wrong predictions, both the false

positives (negative experience from a recommended item) and false negatives (unrealized positive

experience when no item is recommended), out of the total of m predictions made about the target

items. The prediction error is defined to be ϵmi (X)/m. The lower bound of this asymptotic error

can be achieved when the threshold is user-optimal, and it is characterized as follows for the general

I ≥ 1 cases.

Corollary 1 (Corollary to Proposition 1) For C ≥ 0 and I ≥ 1,

1. The asymptotic lower bound of prediction error in a consistent recommender system is

LC =
∑
r′∈R′

min
i∈I

min
{
pi(r′,1), p

i
(r′,0)

}
. (4)

2. LC weakly decreases in C.

Thus, personalized recommender systems not only significantly boost user welfare through cus-

tomization but also consistently achieve higher prediction accuracy compared to traditional generic

systems.
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3.2.1 Empirical illustration: Decomposing the value of data

To provide an empirical illustration of our theoretical decomposition above, we conduct a simulation

study using the Jester dataset, which contains over four million anonymous joke ratings from

73, 421 users. We convert the continuous ratings into a binary format (positive/negative) to fit our

framework. We estimate correlation structure with a Bayesian Dirichlet-Multinomial model with

a uniform prior.7 Using the estimates, we run counterfactual simulations to quantify the value

created by the three key functions of a personalized recommender system: customization, selection,

and screening.

To do so, we measure user utility under different system configurations. We compare a generic

recommender system (C = 0) with a customized recommender system that conditions on user

history (C = 9). We also vary the number of target items available for selection (I) and the

screening threshold (τ). Table 2 summarizes the results. Full details of the dataset and our

empirical methodology are available in Online Appendix B.

Average Utility Standard Error Min / Max

I = 1, τ = 0
Generic RS (C = 0) 0.148 (0.0077) -0.567/0.616

Customized RS (C = 9) 0.148 (0.0077) -0.567/0.616

I = 1, τ = 1/2
Generic RS 0.193 (0.0057) -0.159/0.616

(scr only) Customized RS 0.258 (0.0049) -0.051/0.622

I = 3, τ = 0
Generic RS 0.342 (0.0048) -0.284/0.617

(sel only) Customized RS 0.357 (0.0049) -0.295/0.651

I = 3, τ = 1/2
Generic RS 0.344 (0.0046) -0.133/0.617

(scr and sel) Customized RS 0.371 (0.0042) -0.013/0.634

Table 2: User surplus from recommender systems
scr: screening, sel: selection

Table 2 presents the estimated average utility that users receive from recommender systems

with different parameter settings. Without selection and screening (I = 1, τ = 0), the average

utility is 0.148, which corresponds to the baseline where users try randomly selected items. On

top of this, screening (τ = 1/2) adds 0.045 to average utility with a generic recommender system,

while customization (C = 9) adds a further 0.065, suggesting significant value from within-user

learning. The value of customization is less pronounced when selection is wider (comparing I = 3

7The full detail of this model and its properties are relegated to Online Appendix A.
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to I = 1 with τ = 0), which is consistent with our theoretical predictions for items that are

popular across many user types. When all three functions coexist (C = 9, I = 3, τ = 1/2), the

personalized recommender system adds 0.223 more value to users compared to the situation without

any recommender system.

3.3 Harmful customization

While Proposition 1 shows customization always (weakly) benefits users under the user-optimal

threshold, it can also be shown that such a user-optimal threshold is the only threshold level for

which customization benefits the user regardless of the correlation structure and user history.

Proposition 2 For any τ(r′) ̸= τu and for any I ≥ 1, there exists a collection of I correlation

structures q = {qi}i∈I such that the history r′ target user is strictly worse-off from customization

when the true correlation structures are q.

The customization in predictions is advantageous to the target user only when the threshold

level is properly chosen. Put differently, when τu ̸= τp, either the user or the platform will be strictly

worse off under some correlation structures when customization is used. Thus, customization has

the scope to hurt users if the platforms’ interests cause its threshold level to diverge from the

user-centric threshold. The proof is by construction: We identify q for each τ(r′). Conversely,

for each realized correlation structure p, we can also find τ(r′) ̸= τu under which history r′ user

strictly worse off from customization. The exact value of such threshold levels is presented in Online

Appendix E.

3.4 Marginal value of customization

As highlighted in the previous section, recommender systems learn about target items not only from

the ratings left on the target items by other users, but also from the ratings left by the target user on

other items so as to better customize the recommendation. Hence, the quality of a recommendation

and the resulting user surplus depend also on the degree of customization the platform provides.

In this section, we study how customization affects user value through the recommender system.

Specifically, we are interested in the effect of changes in the degree of customization to the value

generated by each target item under a recommender system. To do so, we isolate the target item

by considering the case I = 1, and investigate the sources behind the value creation process of a

recommender system.
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Suppose that a consistent recommender system takes one more conditioning item into account

in making a recommendation on the target item. One can equally think of a situation where

the target user tries an item recommended by the platform, and the platform now can provide a

customized recommendation that conditions also on the rating of the newly tried item. We denote

the new item and the target item respectively by item C +1 and item C +2. As the recommender

system can condition its predictions on one more item, the predictive accuracy of the target item

improves. However, the improvement in accuracy does not necessarily lead to higher user welfare

because of the misalignment of interests between the user and the platform which is captured by

the threshold level. Here, we study this marginal benefit or harm of customization. Because there

is only one target item, we save notation by using p for pC+2, the correlation structure associated

with the C + 1 conditioning items and the target item.

Definition 4 For r′ ∈ R′ over items {1, · · · , C}, item C+1 and item C+2 are positively correlated

conditional on r′ if v1p(r′,1,1) + v0p(r′,1,0) ≥ 0 and v1p(r′,0,1) + v0p(r′,0,0) ≤ 0, with at least one

inequality holding strictly. If both inequalities are strict, we say that they are strictly positively

correlated conditional on r′.

When the target item and item C + 1 are positively correlated conditional on r′, users whose

history is r′ over the other C conditioning items are more likely to have net positive utility from

the target item if they liked item C + 1. On the other hand, if they did not like the item, it is

more likely that they have net negative utility from the target item. When (v1, v0) = (1,−1), the

condition is satisfied if we have p(r′,1,1) ≥ p(r′,1,0) and p(r′,0,1) ≤ p(r′,0,0) with at least one inequality

holding strictly. In a parallel way we can define a (strict) negative correlation between item C + 1

and the target item. If item C + 1 and the target item are positively or negatively correlated

conditional on r′ ∈ R′, they are said to be correlated conditional on r′. For strict inequalities, they

are said to be strictly correlated conditional on r′.

We focus on a universal threshold level τ = τ(r′), ∀r′. For each r′, there are two trivial cases

in which an extra degree in customization yields only zero marginal customization effect: when the

threshold level is too high or too low as stated below.

τ ≤min

{
p(r′,1,1)

p(r′,1)
,
p(r′,0,1)

p(r′,0)

}
or τ ≥ max

{
p(r′,1,1)

p(r′,1)
,
p(r′,0,1)

p(r′,0)

}
. (5)

If the former is the case, the item is recommended to the user regardless of the history and the
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introduction of the extra customization. This follows from the following equality.

p(r′,1,1) + p(r′,0,1)

pr′
=

p(r′,1)

pr′

p(r′,1,1)

p(r′,1)
+

p(r′,0)

pr′

p(r′,0,1)

p(r′,0)
.

Similarly, in the latter case, the item is not recommended regardless of the introduction of the

extra degree in customization. As a result, the extra customization cannot affect user welfare if (5)

holds. In what follows, we focus on the remaining case, i.e.,

min

{
p(r′,1,1)

p(r′,1)
,
p(r′,0,1)

p(r′,0)

}
< τ < max

{
p(r′,1,1)

p(r′,1)
,
p(r′,0,1)

p(r′,0)

}
.

In the next proposition, we find that a strict correlation between the newly added item and the

target item is a necessary and sufficient condition under which an extra degree in customization

is (on average) beneficial to users regardless of the misalignment of interests between the platform

and users.

Proposition 3 The marginal customization strictly benefits r′ user for any threshold level if and

only if item C + 1 and the target item (item C + 2) are strictly correlated conditional on r′.

When strict correlation exists, the system can use the item to segment r′ users into subgroups

based on their experiences with item C + 1. This segmentation enables the system to accurately

identify and screen out subgroups unlikely to benefit from the target item, enhancing overall user

welfare.

An important insight is that marginal value from additional customization does not always

diminish; it can increase or decrease. Moreover, the marginal value conditioning on multiple items

simultaneously can even surpass the sum of individual values from conditioning on the items sepa-

rately, demonstrating super-additivity in the value of customization.

To see this, let (v1, v0) = (1,−1) and consider a platform that has three items under the user-

optimal threshold level. The target item is fixed at item 3 and we compare user surplus under two

cases depending on whether we condition on item 1 first or item 2 first.

The correlation structure p is given as follows:8

p =

(
2

20
,
1

20
,
1

20
,
7

20
,
1

20
,
2

20
,
5

20
,
1

20

)
.

8Here p = (p(1,1,1), p(1,1,0), p(1,0,1), p(1,0,0), p(0,1,1), p(0,1,0), p(0,0,1), p(0,0,0)).
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We can find the expected user utility under different degrees of customizations. First, when the

platform initially does not customize its prediction, the expected utility from trying the target item

is zero as the item is not recommended to try:

p(1,1,1) + p(1,0,1) + p(0,1,1) + p(0,0,1) =
9

20
<

1

2
.

On the other hand, if the platform conditions on both items in making a prediction about the

target item, we can check that the expected utility to a user is 1
4 . In this case, users of history (1, 1)

and (0, 0) try the item. Now, when the platform conditions only on item 1, the expected utility is

max{p(1,1,1) + p(1,0,1) − p(1,1,0) − p(1,0,0), 0}+max{p(0,1,1) + p(0,0,1) − p(0,1,0) − p(0,0,0), 0} =
3

20
.

Thus, in this case, the marginal value from customization is diminishing. It is 3
20 from degree zero

to degree one, and then 2
20 from degree one to degree two.

On the other hand, if we customize the recommendation conditioning on item 2 first, the

resulting expected utility is given as

max{p(1,1,1) + p(0,1,1) − p(1,1,0) − p(0,1,0), 0}+max{p(1,0,1) + p(0,0,1) − p(1,0,0) − p(0,0,0), 0} = 0.

Thus, in this case, the marginal value from customization is increasing: it is zero from degree zero

to degree one, and then 1
4 from degree one to degree two.

Another notable observation from this example is the super-additivity of values generated by

customization. Specifically, the value created by simultaneously conditioning recommendations on

multiple items can exceed the sum of the values generated by individually conditioning on each

item separately. In the example, the value from conditioning on both item 1 and 2 simultaneously

is 1
4 , while conditioning individually on either item 1 or item 2 yields values of 3

20 or 0, respectively.

The combined individual values 3
20 is thus strictly lower than the value from combined conditioning,

which is 1
4 .

At the user-optimal threshold, super-additivity occurs whenever a particular user history gen-

erates positive expected utility if considered alone, but this value is canceled out when aggregated

with other histories under a lower degree of customization. In the example, consider the history

r′ = (1, 1). Individually, this segment’s expected utility is positive and fully realized when cus-

tomization involves both items. However, when this segment is combined with the (1, 0) history
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(by conditioning on item 1 only), the aggregate expected utility becomes negative, completely

masking the existence of valuable information. This illustrates that more precise segmentation can

unlock substantial value that is otherwise hidden.

This intuition can be formalized in the following proposition, which provides a necessary and

a sufficient condition for super-additivity. Consider two conditioning items, 1 and 2, and the user-

optimal threshold level.

Proposition 4 The value of customization exhibits super-additivity only if there exists i, j such

that

(
v1p(i,1,1) + v0p(i,1,0)

) (
v1p(i,0,1) + v0p(i,0,0)

)
< 0 and(

v1p(1,j,1) + v0p(1,j,0)
) (

v1p(0,j,1) + v0p(0,j,0)
)
< 0.

Furthermore, super-additivity is guaranteed if i, j satisfies v1p(ij1) + v0p(ij0) > 0,

v1
(
p(i,1,1) + p(i,0,1)

)
+ v0

(
p(i,1,0) + p(i,0,0)

)
≤ 0 and

v1
(
p(1,j,1) + p(0,j,1)

)
+ v0

(
p(1,j,0) + p(0,j,0)

)
≤ 0.

This proposition formalizes the mechanism observed in the numerical example. The first part of

the proposition establishes that a fundamental level of informational relevance–strict correlation–is

required for super-additivity to be possible. The second part identifies a specific data structure–the

existence of valuable information that is only achievable when multiple conditions are met–that

is sufficient to guarantee a super-additive outcome. Recognizing that the value of data can scale

in these complex, synergistic ways, rather than only with simple diminishing returns, is crucial

for understanding the full potential of modern AI-driven recommender systems, which excel at

uncovering precisely these types of multi-feature interaction effects.

3.5 Value of an additional user: the breadth and depth of data

In this section, we study the value from finite data to study how a marginal data point (i.e. on

another user) adds value to other users. Specifically, we analyze how the value of this additional

data scales along the two data dimensions: breadth and depth. Contrary to the asymptotic value

we have focused in the previous section, the value from finite data varies depending on the estimator

that a recommender system adopts as different consistent estimators can induce different predictions
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from finite data. Thus, we impose a minimal structure that a consistent estimator should satisfy,

and study the value from marginal data and how it behaves as the system accumulates more data

as it adds users.

To keep the analysis as simple as possible, we consider the case when (v1, v0) = (1,−1) and look

at the case when there is only one target item and the history is given as r′ over C conditioning

items. The platform learns the correlation structure over C + 1 items from the previous N history

r′ users and the target user’s experience with the conditioning items.

In this case, the data X from N users can be summarized by y = (y(r′,1), y(r′,0)), where yr

records the occurrences of outcome r ∈ R = {(r′, 1), (r′, 0)} that appear in X. The true but

unknown probability of a positive experience with the target item is
p(r′,1)

p(r′,1)+p(r′,0)
, which we denote

by z. We focus on the recommender systems that satisfy the following condition.

Definition 5 A recommender system is said to be unbiased if the target item is recommended to

history r′ target user if and only if y(r′,1) ≥ y(r′,0).

In any unbiased recommender system, the target item is recommended to try if and only if the

target user is more likely to have a positive experience with the target item in the sense that the

previous users who share the same history with the target item have reported more positive ratings

than negative ratings.

As will be apparent from the proof, to avoid a mathematical complexity that is involved with

binomial probability and the ceiling function, assume that N is only an odd number by considering

the case of y(r′,1) + y(r′,0) = 2m− 1, m ∈ N. The same results apply to the even-number cases.

Let v(m|r′, p) denote the expected value of the target user in terms of the number of previous

users N = 2m− 1 and the correlation structure is given as p. Formally, we have

v(m|r′, p) =
p(r′,1)

p(r′,1) + p(r′,0)
P [y(r′,1) ≥ y(r′,0)]−

(
1−

p(r′,1)

p(r′,1) + p(r′,0)

)
P [y(r′,1) ≥ y(r′,0)]

=zP [y(r′,1) ≥ y(r′,0)]− (1− z)P [y(r′,1) ≥ y(r′,0)].

Note that this value can take a negative value. For example, for any z ∈ (0, 12), it is possible when

the occurrences of y(r′,1) exceed that of y(r′,0). Therefore, the possibility of a wrong recommendation

always exists even though the platform is committed to giving the recommendation that it expects

to be best for the target user. Although the addition of a data point from an additional user always
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leads to a more informative data structure, it can be shown that the incremental value diminishes.

The following results characterize the nature of data under the recommender system.

Proposition 5 Let v(m|r′, p) denote the value to the target user and ∆v(m|r′, p) be the marginal

value that the target user contributes to the next user.

1. The value is positive and increases in the number of previous users. i.e., v(m|r′, p) increases

in m, ∀p.

2. The marginal value diminishes. i.e., ∆v(m|r′, p) decreases in m, ∀p.

3. For m = 1, the expected value decreases in C.

In words, the value to users increases in the number of available data points (1), but the value

increment diminishes (2). Finally, in contrast to our observation in Proposition 1 where we show the

value increases in the degree of customization when we have enough data points, it decreases in the

degree of customization when the number of data points is not large enough to accommodate the

degree of customization (3). Consider a correlation structure q over the initial C conditioning items,

a new conditioning item and the target item. Thus, it satisfies q(r′,1,1) + q(r′,0,1) = p(r′,1), ∀r′ ∈ R′.

The reason behind the diminishing return to a data point has a clear connection to how an

unbiased prediction is formulated. An unbiased prediction always involves a tradeoff between using

prior information and new data. As we increase the data size, the relative contribution of each data

point to the posterior becomes smaller. Thus, any particular data point that has the same history

as the target user’s becomes less influential in forming the expected utility of the target user. On

the other hand, when there is not enough number of data, an excessive customization hurts the

prediction precision and decrease the value to users.

Taken together, our findings imply a distinctive characterization of the learning curve associated

with recommender systems. As more data accumulates, both dimensions, the breadth and the

depth, expand concurrently. This combined expansion generates cascading waves of diminishing

returns. Initially, increasing the breadth of data improves user welfare, though at a diminishing

rate. Once sufficient breadth is reached to make a higher degree of customization feasible, further

benefits arise by increasing that depth, thereby initiating a new diminishing return curve but

with a higher potential utility, as established in Proposition 1. Importantly, as illustrated by

our examples, this magnitude of the incremental benefit from a higher degree in customization
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does not necessarily diminish and can, in fact, sometimes increase, showcasing super-additivity.

Consequently, the overall learning curve formed by simultaneous expansions along both dimensions

resembles the upper envelope of these diminishing return curves.

Figure 2: Cascading learning curves

To empirically illustrate this theoretical characterization of the learning curve, we conduct a

further simulation exercise using the same Jester dataset introduced in Section 3.2. In this exercise,

we progressively expand the breadth and depth of data: we expand the breadth of data one user at

a time, and for every 100 data-points from users, we also increase the depth by one. The resulting

learning curve, plotted in Figure 2, closely aligns with our theory. It clearly showcases an upper

envelope formed by cascading waves of diminishing returns as data breadth and customization

depth expand concurrently. Further details of this simulation are presented in Online Appendix B.

Lastly, we assess whether the two dimensions of data, breadth and depth, are complements or

substitutes in creating user value. We use our benchmark simulation setting with (I, τ) = (1, 1/2) to

run 1, 000 simulations where we adjust the degree of customization C and the number of training

users N . Let V (C,N) be the average utility from a recommender system that learns from N

previous user’s data about C +1 number of items. To investigate how the two relevant dimensions

interact, we measure the discrete cross-partial of V with respect to C and N :

∆C,N =
(
V (C + δC , N + δN )− V (C + δC , N)

)
−
(
V (C,N + δN )− V (C,N)

)
.

Here, δC and δN are increments in the degree of customization and in the number of previous

users. Depending on whether this cross partial difference is positive or negative, it can be evi-
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dence that the two dimensions are complements or substitutes. For instance, ∆C,N > 0 indicates

complementarity, meaning that a higher degree of customization makes additional user data more

valuable. In our analysis, we take δC = 1 and δN = 500. Figure 3 plots the value of this measure.

Figure 3: Complementarity between the two dimensions

In Figure 3, the area depicted in dark blue represents combinations of (C,N) which generate

positive values of the cross-partial derivative (above 0.0005), so in which the two dimensions are

complements. On the other hand, the area in white represents combinations of (C,N) which gener-

ate negative values of the cross-partial derivative (below −0.0005), so in which the two dimensions

are substitutes. Lastly, the area with light gray represents combinations of (C,N) around zero,

within the error bound of (−0.0005, 0.0005).

As shown in the figure, the two dimensions exhibit strong complementarity when both the

degree of customization and the number of users are low (the peak in the dark blue area). This

finding provides a direct rationale for the cascading effect illustrated in Figure 2. The simulation

that generates the cascading curve, covering data sizes up to 700 users and customization degrees

up to 6, operates within this region of strong complementarity. Because data breadth and depth

are complements in this range, an increase in the number of users enhances the value of deeper

customization. However, this complementarity diminishes as the user base grows, and the two

dimensions can even become substitutes when customization is high but the number of users is
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very small. For instance, at N = 0, the cross marginal effects are ∆6,0 = −0.0011, ∆7,0 = −0.0026,

and ∆8,0 = −0.00359 This reflects the lack of degrees of freedom when N is small and C is

large. This substitutability also shapes the structure of the cascading learning curve. It explains

why a higher degree of customization is only viable after a sufficient number of users have been

accumulated. Increasing C too early, when N is still low, would actually harm prediction accuracy

and lead to lower expected utility. Finally, we note that regardless of the degree of customization,

the cross-effects largely disappear once there are enough users to learn from. In our exercise, once

N ≥ 5000, the magnitude of any cross marginal effect is less than 0.0005.

4 Conclusion

In this paper, we propose a tractable economic model to understand and quantify the value created

by recommender systems, highlighting the critical role of personalization. Our framework identifies

three fundamental components underlying value creation: customization, which segments users

based on their observable features (history); selection, which then identifies the best potential

item for each group; and screening, which finally determines if that best item is good enough to

be recommended. We provide theoretical conditions ensuring that additional customization always

enhances user welfare. Empirically, using a large dataset of over four million anonymous joke ratings

from 73,421 users, we confirm significant value creation attributable to these three elements.

Our findings reveal distinctive scaling properties of value creation along two key dimensions:

the breadth of data (number of users) and its depth (level of detailed user information). While

broader user bases consistently generate positive but diminishing returns, deeper customization,

which is enabled by more capable learning models, can deliver non-diminishing and even super-

additive returns. Empirically, customization constantly delivers incremental value, generating a

learning frontier characterized by cascading waves of diminishing value creation instead of a single

concave curve as may typically be assumed.

Our flexible model, suitable for both theoretical and empirical analyses, can serve as a starting

point for further exploration as we establish a theoretical upper bound on the surplus an ideal

recommender system can confer to its users. Potential extensions include analyzing firms’ optimal

pricing strategies in the presence of recommender systems, exploring the strategic manipulation of

information to steer consumers toward more profitable items, and modeling platform competition

9As in the definition of ∆C,N , these values are obtained when we change N from 0 to 500. A similar result holds
if we increase the size of the training set from N = 1 to N = 500.
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employing different recommender technologies to analyze the resulting market outcomes and long-

run market structure. Furthermore, our formalization of the conditions for super-additivity opens

new avenues for research into optimal data acquisition strategies, as platforms could prioritize

collecting data on features known to have strong, synergistic interaction effects.
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E. Calvano, G. Calzolari, V. Denicoló, and S. Pastorello. Artificial intelligence, algorithmic recommendations

and competition. Working paper, 2025.

X. Chen, Y. Li, and J. Mao. A nearly instance optimal algorithm for top k ranking under the multinomial

logit model. Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial

and Applied Mathematics, Philadelphia, 2018.

A. de Cornière and G. Taylor. Data and competition: A simple framework. RAND Journal of Economics,

2024. Forthcoming.

I. P. Fainmesser, A. Galeotti, and R. Momot. Digital privacy. Management Science, 69(6):3157–3173, June

2022.

Y. Feng, R. Caldentey, and C. T. Ryan. Robust learning of consumer preferences. Operations Research, 70

(2):918–962, 2022.

A. Hagiu and J. Wright. Data-enabled learning, network effect and competitive advantage. RAND Journal

of Economics, 54(4):638–667, 2023.

25



C. Peukert, A. Sen, and J. Claussen. The editor and the algorithm: Recommendation technology in online

news. Management Science, 70(9):5816–5831, 2023.
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A Appendix - Proofs of Propositions

A.1 Proof of Proposition 1

Proof. Consider the user-optimal threshold τu = −v0
v1−v0

. By the definition of a consistent recom-

mender system, i is recommended to history r′ user if and only if the following inequality holds:

pi(r′,1)

pir′
≥ max

j∈I

{pj(r′,1)

pjr′
,

−v0
v1 − v0

}
.

As pi(r′,1) + pi(r′,0) = pir′ = pjr′ , ∀i, j ∈ I, the condition is equivalent to the following expressions

pi(r′,1)

pir′
≥ max

j∈I

{pj(r′,1)

pjr′
,

−v0
v1 − v0

}
⇔ (v1 − v0)p

i
(r′,1) ≥ max

j∈I

{
(v1 − v0)p

j
(r′,1), − v0(p

i
(r′,1) + pi(r′,0))

}
⇔ v1p

i
(r′,1) + v0p

i
(r′,0) ≥ max

j∈I

{
v1p

j
(r′,1) + v0p

j
(r′,0), 0

}
.

As this holds for any r′ ∈ R′ and r′ happens with probability pir′ , ∀i ∈ I, the result in Proposition

1 follows immediately.

A.2 Proof of Corollary 1

Proof. Consider the situation that there is only one target item. In the limit, the prediction error

of a consistent recommender system with the threshold level {τ(r′)}r′∈R′ when there is only one
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target item (i = C + 1) converges to

∑
r′∈R′

pir′

(pi(r′,0)

pir′
1

{pi(r′,1)

pir′
≥ τ(r′)

}
+

pi(r′,1)

pir′
1

{pi(r′,1)

pir′
< τ(r′)

})
. (6)

That is, history r′ occurs with probability pir′ , a false positive recommendation is made with prob-

ability
pi
(r′,0)
pi
r′

once the item is recommended to history r′ target user, and a false negative event

happens with probability
pi
(r′,1)
pi
r′

when the item is not recommended to the user. For each history

r′, the expression (6) inside of the summation is

p(r′,0)1
{
(1− τ)p(r′,1) ≥ τp(r′,0)

}
+ p(r′,1)1

{
(1− τ)p(r′,1) < τp(r′,0)

}
.

Regardless of r′, the expression is minimized at τ = 1
2 . Thus, the error bound in (6) is minimized

at τu(r′) = 1
2 . Taking τu(r′) = 1

2 , the expression (6) is equivalent to

∑
r′∈R′

pr′

(
p(r′,0)

pr′
1
{
p(r′,1) ≥ p(r′,0)

}
+

p(r′,1)

pr′
1
{
p(r′,1) < p(r′,0)

})
=

∑
r′∈R′

p(r′,0)1
{
p(r′,1) ≥ p(r′,0)

}
+ p(r′,1)1

{
p(r′,1) < p(r′,0)

}
=

∑
r′∈R′

min{p(r′,1), p(r′,0)},

For the situations in which there are multiple target items, the expression above can immediately

be extended to (4).

A.3 Proof of Proposition 2

Proof. To begin, we introduce a lemma which characterizes the limit utility that the target user

expect from a consistent recommender system and a generic recommender system when there is

only one item available to the user and a general threshold level is used.

Lemma 1 Suppose there is only one item available to the target user, i.e., i = C + 1.

1. For any consistent mechanism, the expected utility to the target user converges to

∑
r′∈R′

1{pi(r′,1) ≥ τ(r′)pir′}(v1pi(r′,1) + v0p
i
(r′,0)).
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2. The expected utility to the target user converges to

1
{ ∑

r′∈R′

pi(r′,1) ≥ τG
} ∑

r′∈R′

(v1p
i
(r′,1) + v0p

i
(r′,0)).

(Proof of Lemma 1.) The target item is recommended to a user with history r′ if and only if
pi
(r′,1)
pi
r′

≥

τ(r′). Once the item is recommended and tried by the user, the user receives v1
pi
(r′,1)
pi
r′

+v0
pi
(r′,0)
pi
r′

. The

ex-ante utility is derived taking into account that the target user has a history r′ with probability

pir′ . The same logic can be applied in deriving the other utility characterizations. □

Now, we prove Proposition 2. For each history of a target user r′, we construct a set of I

correlation structures q = {qi}i∈I under which an extra degree in customization strictly hurts the

target user. Because the proof is done by construction, it is without loss of generality to assume

I = 1. For any cases with I > 1, we can simply let qj , j ̸= C + I = M , satisfies the following

inequality and focus on qM only:

zj(r
′) =

qj(r′,1)

qr′
< τ(r′), ∀j ̸= M and ∀r′ ∈ R′.

Let I = 1 and τ ̸= τu, where τ is the threshold level the system adopts. Similar to the

construction of R′, we denote the set of all outcomes that can be generated by the first C − 1

conditioning items by R′′. Similarly, (r′′, k, 1) and (r′′, k, 0) represents the positive and negative

user experience with the target item of a history (r′′, k) user, k ∈ {1, · · · , nC}.

We will show that for any τ ̸= τu, there exists qM such that the target user with history r′′ ∈ R′′

receive strictly lower utility when the recommendation is customized based on C conditioning items

and the target item than when it is customized based on first C − 1 conditioning items and the

target item. By an induction argument, this will prove the existence of a correlation structure that

users are strictly worse off from an extra degree in customization.

Firstly, if τ < τu, then consider the following correlation structure qM . For each r′′ ∈ R′′ and

k ∈ {1, · · · , nC}, the following equalities and inequality hold:


qM
(r′′,k,1)
qM
(r′′,k)

= τ if k ̸= nC

qM
(r′′,k,1)
qM
(r′′,k)

< τ if k = nC .
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Thus, we have

∑
k∈{1,··· ,nC} qM

(r′′,k,1)∑
k∈{1,··· ,nC} qM

(r′′,k)
< τ . Under this correlation structure, when the recommendation

is fully customized, item M is recommended to all users except the history (r′′, nC) user, whereas

when the system omits conditioning item C in making recommendations, no user is recommended

to try item M .

The user’s utility under fully customized recommendations can be represented as follows using

Lemma 1:

∑
r′′∈R′′

∑
k∈{1,··· ,nC}

qM(r′′,k)1

{qM(r′′,k,1)

qM(r′′,k)
≥ τ

}(
v1

qM(r′′,k,1)

qM(r′′,k)
+ v0

qM(r′′,k,0)

qM(r′′,k)

)

=
∑

r′′∈R′′

∑
k∈{1,··· ,nC}

qM(r′′,k)1

{qM(r′′,k,1)

qM(r′′,k)
≥ τ

}
(v1 − v0)

(qM(r′′,k,1)

qM(r′′,k)
− τu

)
.

As
qM
(r′′,k,1)
qM
(r′′,k)

= τ < τu for k ̸= nC , the user utility is strictly negative for users whose history is not

(r′′, nC , 1). On the other hand, the history (r′′, nC , 1) user does not try the item. By construction,

the item is recommended to no users when the system omits C, and the resulting user utility is

zero.

Secondly, suppose we have τ > τu. Again, for each r′′ ∈ R′′ and k ∈ {1, · · · , nC}, consider a

correlation structure qM that satisfies the following equality and inequality:



qM
(r′′,k,1)
qM
(r′′,k)

> τ if k = 1

qM
(r′′,k,1)
qM
(r′′,k)

= τ if k ̸= 1 or nC

qM
(r′′,1,1)+qM

(r′′,nC,1)

qM
(r′′,1)+qM

(r′′,nC )

= τ.

Under this correlation structure, item M is recommended to all users when the system omits

conditioning item C in making predictions. However, if it takes all conditioning items into account,

the history (r′′, nC) user does not receive a recommendation. Because tryingM is actually beneficial

to all users, there is a missing opportunity if recommendations are fully customized.

A.4 Proof of Proposition 3

Proof. Without loss of generality, we only look at the case of
p(r′,1,1)
p(r′,1)

≥ p(r′,0,1)
p(r′,0)

. The opposite case

can be shown using the exact same logic.
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To begin, note that the expected utility of r′ user before the extra degree in customization is

1

{
p(r′,1,1) + p(r′,0,1)

p(r′,1) + p(r′,0)
≥ τ

}(
v1

p(r′,1,1) + p(r′,0,1)

pr′
+ v0

p(r′,1,0) + p(r′,0,0)

pr′

)
.

On the other hand, the expected utility of the user after the extra degree in customization is

p(r′,1)

pr′
1

{
p(r′,1,1)

p(r′,1)
≥ τ

}(
v1

p(r′,1,1)

p(r′,1)
+ v0

p(r′,1,0)

p(r′,1)

)
+

p(r′,0)

pr′
1

{
p(r′,0,1)

p(r′,0)
≥ τ

}(
v1

p(r′,0,1)

p(r′,0)
+ v0

p(r′,0,0)

p(r′,0)

)
.

Therefore, for each r′ ∈ R′, the benefit of the marginal customization is


0 if τ ≤ p(r′,0,1)

p(r′,0)
or τ ≥ p(r′,1,1)

p(r′,1)

−(v1p(r′,0,1) + v0p(r′,0,0))/pr′ if
p(r′,0,1)
p(r′,0)

≤ τ <
p(r′,1,1)+p(r′,0,1)
p(r′,1)+p(r′,0)

(v1p(r′,1,1) + v0p(r′,1,0))/pr′ if
p(r′,1,1)+p(r′,0,1)
p(r′,1)+p(r′,0)

≤ τ <
p(r′,1,1)
p(r′,1)

.

(Diff)

The if-condition in the first case utilizes our assumption
p(r′,1,1)
p(r′,1)

≥ p(r′,0,1)
p(r′,0)

.

First, let item C + 1 and the target item are strictly correlated conditional on r′. Because we

focus on
p(r′,1,1)
p(r′,1)

≥ p(r′,0,1)
p(r′,0)

, the two items are strictly positively correlated. That is, we have

v1p(r′,0,1) + v0p(r′,0,0) < 0 and v1p(r′,1,1) + v0p(r′,1,0) > 0.

Thus, for any r′ that does not satisfies (5), the expected utility related to r′ is strictly positive.

Conversely, suppose that the two items are not correlated conditional on r′. By definition of

correlation, it is either both v1p(r′,1,1)+ v0p(r′,1,0) and v1p(r′,0,1)+ v0p(r′,0,0) are positive or both are

negative. Thus, there always exists τ such that the utility represented in (Diff) is negative.

A.5 Proof of Proposition 4

Proof. For brevity, define xij , the expected payoff of the history (i, j) users under τu, by

xij = v1pij1 + v0pij0.

The marginal benefit from conditioning on two item simultaneously is given as

∑
i,j∈{0,1}

max {xij , 0} −max

 ∑
i,j∈{0,1}

xij , 0

 .
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On the other hand, the sum of marginal benefits from conditioning on one item each is

∑
i∈{0,1}

max {xi1 + xi0, 0}+
∑

j∈{0,1}

max {x1j + x0j , 0} − 2max

 ∑
i,j∈{0,1}

xij , 0

 .

Defining the difference between the two approaches by ∆ and denoting max{a, 0} by a+, we have

∆ =
∑

i,j∈{0,1}

(xij)+ +

 ∑
i,j∈{0,1}

xij


+

−
∑

i∈{0,1}

(xi1 + xi0)+ −
∑

j∈{0,1}

(x1j + x0j)+ .

Here, note that a+ = (a+ |a|)/2. Using this, we can write ∆ as

∆ =
1

2

 ∑
i,j∈{0,1}

|xij |+

∣∣∣∣∣∣
∑

i,j∈{0,1}

xij

∣∣∣∣∣∣−
∑

i∈{0,1}

|xi1 + xi0| −
∑

j∈{0,1}

|x1j + x0j |

 .

This is because the non-absolute value terms cancel out to zero. Now, the super-additivity is

equivalent to ∆ be strictly positive.

We first show the necessity. Suppose, for a contrary that, for all i, j ∈ {0, 1}, we have either

xi1xi0 ≥ 0 or x1jx0j ≥ 0. First, if xi1xi0 ≥ 0 for all i ∈ {0, 1}, we have |xi1|+ |xi0| = |xi1 + xi0|, ∀i.

Thus,

∆ =
1

2

∣∣∣∣∣∣
∑

i,j∈{0,1}

xij

∣∣∣∣∣∣−
∑

j∈{0,1}

|x1j + x0j |

 ≤ 0,

which is a contradiction. Similarly, if x1jx0j ≥ 0 for all j ∈ {0, 1} we have

∆ =
1

2

∣∣∣∣∣∣
∑

i,j∈{0,1}

xij

∣∣∣∣∣∣−
∑

i∈{0,1}

|xi1 + xi0|

 ≤ 0.

The two remaing cases are 1) xi1xi0 ≥ 0 and x(1−i)1x(1−i)0 < 0 and 2) 1) x1jx0j ≥ 0 and

x1(1−j)x0(1−j) < 0 for i, j ∈ {0, 1}. In these cases, if we have at least one product that is strictly

smaller than zero in one dimension, say i-dimension, then it should be the case that all the inequal-

ities on the other dimension, i.e., j-dimension, should be positive by our hypothesis. For instance,

if x11x10 < 0, it must be x1jx1j ≥ 0 for all j ∈ {0, 1}. Thus, we go back to the previous case we

already have shown to have a contradiction.

Now, to show the sufficiency, suppose that there is i, j such that xij > 0, xi1+xi0 ≤ 0 and x1j+

x0j ≤ 0. Then, it should be the case xi(1−j) < 0 and x(1−i)j < 0.
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Under these assumptions, we have (xij)+ = xij , xi(1−j) = 0, x(1−i)j = 0, (xi1 + xi0)+ = 0 and

(x1j + x0j)+ = 0. Thus,

∆ =xij + (x(1−i)(1−j))+ +
(
xij + xi(1−j) + x(1−i)j + x(1−i)(1−j)

)
+

−
(
x(1−i)j + x(1−i)(1−j)

)
+
−
(
xi(1−j) + x(1−i)(1−j)

)
+
. (⋆)

Now, compare x(1−i)(1−j) to two thresholds:

θ0 = max{−xi(1−j),−x(1−i)j} and θ1 = −xij − xi(1−j) − x(1−i)j .

From xi(1−j) ≤ −xij and x(1−i)j ≤ −xij , we have θ0 ≥ xij and θ1 ≥ θ0. Thus, consider the following

three cases:

Case 1: x(1−i)(1−j) ≤ θ0. Then

(x(1−i)(1−j)+x(1−i)j)+ = 0, (xi(1−j)+x(1−i)(1−j))+ = 0, (xij+xi(1−j)+x(1−i)j+x(1−i)(1−j))+ = 0.

Hence by (⋆),

∆ = xij + (x(1−i)(1−j))+ ≥ xij > 0.

Case 2: θ0 < x(1−i)(1−j) ≤ θ1. Exactly one of the two sums is positive. Without loss of generality,

suppose θ0 = −xi(1−j), so

(xi(1−j) + x(1−i)(1−j))+ = x(1−i)(1−j) + xi(1−j),

while the other two positive-part terms in (⋆) vanish. Also x(1−i)(1−j) > 0, so (x(1−i)(1−j))+ =

x(1−i)(1−j). Therefore

∆ = xij + x(1−i)(1−j) − (x(1−i)(1−j) + xi(1−j)) = xij − xi(1−j) ≥ 2xij > 0,

because xi(1−j) ≤ −xij .
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Case 3: x(1−i)(1−j) > θ1. All three positive-part terms in (⋆) are active, giving

∆ =xij + x(1−i)(1−j) + (xij + xi(1−j) + x(1−i)j + x(1−i)(1−j))

−(x(1−i)(1−j) + x(1−i)j)− (xi(1−j) + x(1−i)(1−j)) = 2xij > 0.

In every case ∆ > 0. This proves strict super-additivity under τu.

A.6 Proof of Proposition 5

Proof. For notational simplicity, let P [y(r′,1) ≥ N1 − y(r′,1)] = T (m, 2m− 1, z). That is,

T (m, 2m− 1, z) =
2m−1∑
k=m

(
2m− 1

k

)
zk(1− z)2m−1−k.

We first need to show that v(m|r′, p) increases in m. Let Xn ∼ Binomial(n, z). Note that the

associated cumulative distribution function of the binomial random variable is

P [Xn ≤ k] =
k∑

i=0

(
n

i

)
zi(1− z)n−i = 1−

n∑
i=k+1

(
n

i

)
zi(1− z)n−i = 1− T (k + 1, n, z).

Using this, we have

T (m+ 1, 2m+ 1, z) =1− P [X2m+1 ≤ m]

=1− P [X2m+1 ≤ m|X2m−1 ≤ m− 2]P [X2m−1 ≤ m− 2]

− P [X2m+1 ≤ m|X2m−1 = m− 1]P [X2m−1 = m− 1]

− P [X2m+1 ≤ m|X2m−1 = m]P [X2m−1 = m]

=1− P [X2m−1 ≤ m− 2]− (1− z2)P [X2m−1 = m− 1]− (1− z)2P [X2m−1 = m]

=T (m− 1, 2m− 1, z)− (1− z2)

(
2m− 1

m− 1

)
zm−1(1− z)m

− (1− z)2
(
2m− 1

m

)
zm(1− z)m−1.

Here, note that
(
2m−1
m−1

)
=

(
2m−1
m

)
and T (m−1, 2m−1, z) = T (m, 2m−1, z)+

(
2m−1
m−1

)
zm−1(1− z)m.

The last expression can be simplified to

T (m+ 1, 2m+ 1, z) = T (m, 2m− 1, z)− (1− 2z)

(
2m− 1

m

)
zm(1− z)m.
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Thus, we have

v(m+ 1|r′, p)− v(m|r′, p) =− (1− 2z)(T (m+ 1, 2m+ 1, z)− T (m, 2m− 1, z))

=(1− 2z)2
(
2m− 1

m

)
zm(1− z)m ≥ 0.

That is, for any realization of z, the user always expects weakly higher utility when there are more

accumulated data points.

To show the diminishing marginal return property, let ∆v(m|r′, p) be the marginal externality

that the (m+ 1)th user contributes to the subsequent user. That is,

∆v(m|r′, p) = v(m+ 1|r′, p)− v(m|r′, p).

Using the derivation in the above proposition, it has a closed form representation of

∆v(m|r′, p) = (1− 2z)2
(
2m− 1

m

)
(z(1− z))m.

Consider the ratio between the following two increments:

∆v(m+ 1|r′, p)
∆v(m|r′, p)

=
v(m+ 2|r′, p)− v(m+ 1|r′, p)
v(m+ 1|r′, p)− v(m|r′, p)

=

(
2m+1
m+1

)
zm+1(1− z)m+1(

2m−1
m

)
zm(1− z)m

=
2(2m+ 1)

m+ 1
z(1− z) < 4z(1− z) ≤ 1.

That is, the increment diminishes.

Lastly, to show the third point, we want to show v(1|r′, p) > p(r′,1)
pr′

v(1|(r′, 1), q)+p(r′,0)
pr′

v(1|(r′, 0), q).

Here, the right hand side is the expected value when the degree of customization is C + 1. For

m = 1, the probability that the target item is recommended is p(r′,1)/(p(r′,1) + p(r′,0)) when the de-

gree of customization is C and it is p(r′,1,1)/(p(r′,1,1)+p(r′,1,0)) when we have one more conditioning

item. Thus, the expected utility for the case of customization of degree C is

v(1|r′, p) =
(
2

p(r′,1)

p(r′,1) + p(r′,0)
− 1

)
p(r′,1)

p(r′,1) + p(r′,0)

=

(
2
p(r′,1,1)

pr′
+ 2

p(r′,0,1)

pr′
− 1

)
p(r′,1,1) + p(r′,0,1)

pr′
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On the other hand, for the customization of degree C + 1, we have

v(1|(r′, i), q) =
(
2
p(r′,i,1)

p(r′,i)
− 1

)
p(r′,i,1)

p(r′,i)
for i ∈ {0, 1}

Thus, we have

v(1|r′, p)−
(
p(r′,1)

pr′
v(1|(r′, 1), q) +

p(r′,0)

pr′
v(1|(r′, 0), q)

)
=

(
2
p(r′,1,1)

pr′
+ 2

p(r′,0,1)

pr′
− 1

)
p(r′,1,1) + p(r′,0,1)

pr′
−
(
2
p(r′,1,1)

p(r′,1)
− 1

)
p(r′,1,1)

pr′
−
(
2
p(r′,0,1)

p(r′,0)
− 1

)
p(r′,0,1)

pr′

=

(
2
p(r′,1,1)

pr′
+ 2

p(r′,0,1)

pr′

)
p(r′,1,1) + p(r′,0,1)

pr′
− 2

p(r′,1,1)

p(r′,1)

p(r′,1,1)

pr′
− 2

p(r′,0,1)

p(r′,0)

p(r′,0,1)

pr′

=

(
2
p(r′,1,1)

pr′
+ 2

p(r′,0,1)

pr′

)
p(r′,1)

pr′
− 2

p(r′,1,1)

p(r′,1)

p(r′,1,1)

pr′
− 2

p(r′,0,1)

p(r′,0)

p(r′,0,1)

pr′

=
2

(pr′)2
(
p(r′,1,1)p(r′,1) + p(r′,0,1)p(r′,1) − (p(r′,1,1))

2 − (p(r′,0,1))
2
)

=
4p(r′,1,1)p(r′,0,1)

(pr′)2

To derive the third and the fourth equations, we used the property that p(r′,1) = p(r′,1,1) + p(r′,0,1).

As pr > 0, for all r ∈ R, we conclude that the difference is strictly positive.
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